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PREFACE

The original mimeographed edition (1938) of Lectures and Conferences on

Mathematical Statistics was exhausted within two years of its publication.

This, together with the subsequent continued inquiries from various persons

and institutions, suggested that broad circles of statisticians are in need of

a book such as this which gives the general ideas behind the theory of sta-

tistics and behind its applications. Unfortunately, certain circumstances

prevented an earlier reissue of the book.

The present edition differs substantially from the first by an omission,

by several additions and by reformulation of a considerable part of the

earlier material. Owing to the extraordinary development of the econo-

metric school on the one hand and of the works on stochastic processes

on the other, the relevant Conference in the first edition became out of

date and was omitted entirely. The interested reader is referred to arti-

cles in Econometrica, particularly to those of Ragnar Frisch, T. J. Koop-

mans, Oscar Lange and J. Marschak. In addition, he will find it both

interesting and instructive to study the articles of J. L. Doob and W. Feller

recently published in the Proceedings of the Berkeley Symposium on Mathe-

matical Statistics and Probability.1

Sporadic additions to the original material are inserted throughout

the book. However, there are a few sections which deserve special mention.

One such section is concerned with sampling human populations. Specifi-

cally, Parts 1 and 2 of Chapter III include a systematic presentation of the

theory. Part 2 reproduces an article published some time ago in the Journal

of the American Statistical Association and it is a pleasure to record my

indebtedness to the Editor for the kind permission to do so.

The next substantial addition is Part 3 of Chapter III, which deals with

spurious methods of studying correlation. Although the subject is not novel,

the inclusion of a special section given to it seems justified by the fact that

it appears to have been neglected by other authors while many empirical

studies continue to involve errors of the kind described.

Although the earlier edition of Lectures and Conferences contains a

counterpart of the present Chapter IV, there is a very substantial difference

in presentation and a considerable addition of material. This chapter gives

1 University of California Press, Berkeley and Los Angeles, 1949, 501 pp.

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

0
 1

5
:4

0
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

7
2

9
7

9
8

2
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



PREFACE

a three-cornered discussion of the ideas of estimation, from the point of view

of Bayes' formula, from the point of view of confidence intervals and from

the point of view of fiducial argument. Since the publication of the first

edition of Lectures and Conferences, there has occurred a certain shift in

"allegiances" exemplified by the fact that a large section devoted to fiducial

distributions, present in an early edition of a book by an eminent author,

does not appear in his subsequent books, which contain, instead, sections on

confidence intervals. However, indications of the confusion of the Bayes'

and the more modern treatment of the problem are still noticeable in certain

sections of the literature and misconceptions involved in the fiducial argu-

ment appear about as frequently. For this reason it seemed advisable to

subject the matter to a detailed discussion. Here I wish to record my hearty

thanks to Professor E. S. Pearson, the Editor of Biometrika, for his kind

permission to reproduce my article, originally published in that journal.

Part 4 of Chapter IV is entirely new and is given over to the brilliant

recent result of Charles M. Stein.

Before concluding, I take pleasure in expressing my hearty thanks to

Dr. Evelyn Fix for her invaluable help in the preparation of this book,

for preparing the numerical illustrations, for reading and correcting the

manuscript, and for kindly advice and suggestions.

J. Neyman

March, 1952
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CHAPTER I

The Modern Viewpoint on the Classical Theory of Probability

and Its Applications. Tests of Statistical Hypotheses

(The contents of this chapter are based on three lectures delivered at the Graduate

School of the United States Department of Agriculture in April, 1937.)

Introduction

After the original titles of my lectures had been fixed, I received a number

of letters from members of the prospective audience and these letters forced

me to modify the original programme and to place more emphasis than

I had intended on concepts basic in the theory of probability and statistics.

The concept of probability has been discussed and defined in many dif-

ferent ways, each having its own advantage. It must be emphasized that,

although the respective theories frequently contradict each other, this does

not necessarily mean that some of them are wrong. Any theory is correct

as long as the axioms on which it is based are not mutually contradictory

and as long as there are no errors in deductions. Among the existing

systems of axioms and theories deducible from them, we must make a choice.

In this we shall be guided by considerations of usefulness or, by what fre-

quently amounts to the same thing, our personal taste. It is important,

however, to make clear the theory in which one is working. Otherwise,

unnecessary misunderstandings may arise.

In my first lecture I shall describe the basic ideas of the theory of proba-

bility that I prefer and have had in mind when working on the' theories of

testing statistical hypotheses and of estimation.

So far as I am aware these views of mine are shared by E. S. Pearson

and other workers attached to the Department of Statistics at University

College, London. It may be, therefore, that the present lectures will help

one to understand the whole of the work carried on in that centre.

It would be useless, of course, to try to develop the entire theory of prob-

ability in only two or three lectures. Therefore I shall concentrate on the

general ideas, definitions, etc. Details of the theory of probability treated

from the same point of view, though perhaps using different wordings, may

be found in various books and papers, of which I shall mention the following:
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2 MATHEMATICAL STATISTICS AND PROBABILITY

1. H. Cramer: Random variables and probability distributions. Cambridge, 1937.

2. M. Frechet: Recherches theoriques modernes sur la theorie des probabilites.

Gauthier-Villars, Paris, 1937.

3. A. Kolmogoroff: Grundbegriffe der Wahrscheinlichkeitsrechnung. Julius Springer,

Berlin, 1933.

Finally, an elementary systematic presentation is given in the recent book:

J. Neyman: First course in probability and statistics. Henry Holt and Co., New

York, 1950.

The second lecture will be given entirely to the question of the possibility

of applying the mathematical theory of probability to practical problems.

The ideas developed here have grown out of reading such writers as E. Borel,

L. v. Bortkiewicz, Karl Pearson and undoubtedly others but it is difficult

to give exact references.

In the third and last lecture I shall deal with the somewhat narrower

but still rather broad question of what is the meaning of a test of a statistical

hypothesis and what are the grounds for choosing between several alternative

tests. Material for the third lecture has been taken essentially from an

article of mine which was published in 1929 in the Proceedings of the First

Congress of Slavonic Mathematicians in Warsaw. The title of the article

is "Methodes nouvelles de verification des hypotheses statistiques."

Part 1. On the Theory of Probability

1. Definition of probability. Probability as I shall define it will always

refer to an object of a specified kind, say A, having a certain property,

say B. Thus we may speak of the probability of a ball having the property

of being black, of a person 36 years of age "having the property" of dying

during the next twelve months, etc. It has been usual to define probability

referring either to events or to propositions. Obviously the choice is very

much a matter of convenience and it seems to me that speaking of the

probabilities of objects having certain properties is convenient. Besides, it

will be noticed that in this nomenclature we may speak also of probabilities

of events. We will mean the probabilities of events having the property

of actually occurring. Also it will be possible to speak of probabilities of

propositions, which will mean the probabilities of propositions having the

property of being true. The assumed system of expressions seems, therefore,

to be not less general than the others.

In a mathematical definition, the actual wording used does not matter

very much. However, it does have some importance since different wordings

may appeal to intuition with different strengths and may give different

emphases to the essential source of the concepts introduced. The essential
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TESTS OF STATISTICAL HYPOTHESES 3

point in the concept of probability which I will use is that it will always

refer to a specified set of objects, which I shall describe as the fundamental

probability set. This point is emphasized in the wording adopted, since

we agree to speak of the probability of a specified object A having a property

B. It will be noticed that the process of specifying the object A is equivalent

to specifying or perhaps even enumerating all objects that are "A" in

distinction from those that are not. Now, all objects A will form what

I shall call the fundamental probability set (F.P.S. for short). This will

also be denoted by (A).1

It is obvious that in order to be able to enumerate all objects A, these

objects must be well defined by a specification of one or more properties

distinguishing the objects A from all other objects. This property will also

be denoted by the same letter A.

Before proceeding further I shall explain the terms logical sum and

logical product of two or more properties. Let Bi and B2 be any two

properties. The property B3 is a logical sum (or sum for short) of Bi and

B2 if it consists in an object possessing at least one of the properties Bi

and B2, and for this sum we shall write B3 = Bi + B2. It will be convenient

to use an expression like "an object Bi + B2" to denote an object possessing

the property Bi + B2, etc.

A property B4 will be called a logical product (or product for short) of

the properties Bi and B2 if it consists in an object possessing both Bi and

B2. We shall use the notation B4 = BiB2 for this property and use the

expression "an object BiB2" to denote an object possessing the property

BiB2.

The above definitions are immediately extended to the sum and product

of any number of properties, finite or infinite.

Turning now to the definition of probability of an object A possessing

the property B, I want to emphasize that it requires the enumeration of all

the objects A actually possessing the property B, i.e. all the objects possess-

ing the property AB. According to the conventions already established, the

set of those will be denoted by (AB).

Up to the present time our considerations have been perfectly general.

Owing to the fact that the mathematical theory of sets is not commonly

known, further steps leading to the definition of probability will have to be

discussed twice, once on the assumption that the fundamental probability

set (A) is finite and next, that it is anything, finite or infinite.

Suppose that the fundamental probability set (A) is finite, and denote

by n the number of objects it contains. Further, let k be the number of

*."(#)" stands for "all x" and analogously for any letter in parentheses. This nota-

tion is in common use.
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4 MATHEMATICAL STATISTICS AND PROBABILITY

objects belonging to (A) and having the property B. The probability of

an object A having the property B will be defined as the ratio k/n, and

will be denoted by

P{B\A}=-. (1)

n

In other words, the probability of an object A having the property B is

defined as the proportion of objects A having the property B. The expres-

sion "the probability of an object A having a property B" is, of course,

somewhat lengthy; we shall therefore use abbreviations such as "the prob-

ability of B," but it is necessary to remember the full meaning of these words.

Whenever there will be no danger of misunderstanding, the above notation

can be simplified. For instance, if the probabilities that are calculated in

the course of solving a certain problem refer always to the same funda-

mental probability set (A), the letter A may be omitted in the symbol of

probability, whereupon P{B} will suffice for P{B \ A). Sometimes, how-

ever, we shall have to deal not only with a fundamental probability set (A),

but also with one or more others, each forming a part of (A). For instance,

besides dealing with the probability of an object A having a certain property

B', we might deal also with the probability of an object AB having the

same property B' (or some other). In such cases the probabilities referring

to objects A may be written without specifying their set, while probabilities

referring to objects AB may not be: thus, P{B' | AB} may be shortened

to P{B' | B), and P{B' \ A) may be shortened to P{B'}.

It is most important to distinguish the probabilities P{B' | A} and

P{B' | AB). The former is the proportion of all objects A having the prop-

erty B'', while the latter is the proportion of objects AB having the property

B' in addition to the property AB. Special care in distinguishing these two

concepts is needed when we use shorter expressions and notations.

In order to emphasize this distinction we shall sometimes describe

P{B' | A) as the absolute probability of B' and P{B' \ AB) as the relative

probability of B' given B. The relative probability of B' given B may or

may not be equal to the absolute probability of B'. If it is, then we say

that the property B' is independent of B.

It will be noticed that the definition of probability applies only to cases

where the fundamental probability set is not empty, that is to say, only

when it contains at least one element. Otherwise the word probability

would have no meaning. It follows that whenever we speak of a probability,

we imply that the fundamental probability set is not empty.

It follows from the definition that the probability P of any property, E,

is a fraction between zero and unity. If P = 0, none of the elements of

the F.P.S. has the property E. In this case we can conveniently describe
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TESTS OF STATISTICAL HYPOTHESES 5

E as an impossible property. If on the other hand P = 1, it follows that

the property E may be described as a sure property.2 It is easily seen that

the converses are true, namely that if Ei and E2 are an impossible and a

sure property respectively, then P{Ei} = 0 and P{E2) = 1. It will be

noticed that the relative probability P{B' \ B} of B' given B has a definite

meaning only if B is not an impossible property.

The characteristic feature of the above definition of probability is (i)

that it refers to sets of objects and (ii) that it does not involve any reference

to "equally probable" cases. In order to emphasize the consequences of

the definition, I shall discuss a few examples.

Example 1.—A die has six faces, one and only one of which has six points

on it. The probability of a side of the die having six points on it will be,

according to our definition, always 1/6. No experiments with die throwing

are able to alter this conclusion.

Example 2.—The probability of a side of the die having six points on it

must be distinguished from the probability of getting six points on the

die when the die is thrown.

Reading this last sentence once again and comparing it with the definition

of probability, equation (1), one will easily see that, without further descrip-

tion of the situation, the definition of probability could not be applied to

the throws. In speaking of "the probability of getting six points on the

upper side of a die when throwing" and in trying to apply the definition

of probability, we may have various things in mind.

(a) We may think of a set of 100 throws already carried out. Then

there will be no difficulty in calculating the probability required.

(b) We may think of a set of some 100 future throws. In that case the

probability required, say P{six}, will be just unknown. To establish its

value, we should carry out the throws and count the cases with "six."

(c) Finally we may have in mind some hypothetical series of throws and

discuss various probabilities referring to it. Usually such discussions con-

sist in deducing values of one or more probabilities from the assumed hypo-

thetical values of others. Some examples of such discussions will be found

later.

Of the three ways of interpreting the ambiguously stated problem con-

cerning the probability of getting "six" on a die when throwing, the last is

the most fruitful. We shall see this a little further on when I shall speak

of the so-called empirical law of large numbers.

Example 3.—Consider the familiar expansion tr = 3.14159 • • • and denote

by Ziooo its thousandth decimal. What is the probability P{xiooo = 5} of

its being equal to 5? Here the question is not ambiguous and the answer

2 "Sure property" is an English adaptation of the French phrase, "propriete certaine,"

as introduced by Maurice Frechet and used in similar contexts.
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6 MATHEMATICAL STATISTICS AND PROBABILITY

is immediately found: the value of the probability P{xiooo = 5} is actually

unknown, but it is certainly either zero or unity. In fact, there is but

one object satisfying the definition of Xiooo. Therefore, the fundamental

probability set consists of only one element and thus the denominator

in the right hand side of equation (1) is equal to unity. The numerator

may be equal to unity—this if Xiooo is actually equal to 5—or to zero, if

Zxooo is not equal to 5. As the decimals in the expansion of i r are known

only to 707 places, z10oo is unknown and therefore we do not know whether

P{xiooo = 5} is zero or unity.

As I have mentioned before, probabilities may refer to some hypothetical

probability sets, with assumed properties. This case is the one with which

the theory is most often concerned, and is of extreme importance. There-

fore I shall give two illustrations.

Example 4.—Consider a set Pi of n die tosses, and denote by P2 the set

of y2n(n - 1) different pairs that may be formed out of them, no element

to be repeated in a pair. If certain properties of the set Px are given we

may calculate the probability, say P{six, six | P2}, of a pair of throws with

two "sixes," referring it to P2 as the F.P.S. The property of Pi that is

needed for the calculation of P{six, six | F2} consists in the probability

P{six | Fi) of getting a six in one throw. Assume, for instance, that

P{six|F1}=i. (2)

This would mean that among the n throws in Pi there are exactly n/6

with six on the top face of the die, from which we could conclude thati

among the Y2n(n - 1) pairs of throws forming F2 there are exactly

1 /l \ n(n-6)

— n(-n-l) = - (3)

12 \6 / 72

such pairs that consist of two "sixes," and therefore that the probability

P{six,8ixlP2} = "~ . (4)

36(n - 1)

It will be seen that the above result is purely hypothetical: if the con-

nection between Pi and F2 is as described above, and if the probability of

a specified property ("six") calculated with regard to Pi is 1/6, then the

probability P{six, six | P2} = (n - 6)/36(n - 1). Thus, if the probability

set P2 has the properties as specified in the conditions of the problem, then

formula (4) holds good. We may notice at this stage that the properties

of a probability set P2 relevant for the calculation of probabilities may be

given indirectly by specifying certain properties of some other set Pi (or
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TESTS OF STATISTICAL HYPOTHESES 7

of many other such sets), and by describing the connection between F2 and

Fi. A similar situation prevails in the following example.

Example 5.—Consider a series of n hypothetical experiments and assume

that each of these experiments results either in an event E or in a failure

to produce E, described as non-E. Assume further that a separate prob-

ability set is connected with each of the experiments, each set consisting of

the same number m of elements and denote by Ft' the set corresponding to

the ith experiment, i = 1, 2, • • •, n. Suppose that whatever be i, the prob-

ability of the event E calculated with regard to F{ is the same, that is,

P\E\Fi'}=V. (5)

We may now consider still another probability set, say F0, the elements

of F0 being all possible combinations of elements of the sets i*Y, F2, •••, Fn'

taken n at a time, where each element in the combination is selected from

a different set. If each of the sets Fi, F2, • • •, Fn' consists of the same

number m of elements, then the set F0 will consist of mn elements.

The assumed properties of the sets Fi, F2', • • •, Fn' and their connection

with F0 permit the calculation of various probabilities referring to F0. For

instance we may calculate the probability, say Pn,k, which frequently is

picturesquely described as the probability of getting an event E exactly

fc times in the course of n' independent trials, the probability of E in each

trial being permanently equal to p. This probability is easy to calculate

and is known to be equal to

^-w^i*1-'^. (6)

But it is important to know what this formula denotes. This probability

Pn,fc is no more and no less than the proportion of elements of the set F0 that

have the desired property of k "events" E and n - fc "events" non-£.

Again in this example, the calculation of the probability PB,fc referring to

the probability set F0 was based on probabilities referring to the sets Fi,

F2, • • •, F^ and on the structure of elements of F0, each of them being

composed of elements of Fi, F2, •", Fn'.

This is a typical situation and it will be convenient to introduce special

terminology for its description. If the elements of any probability set F0

are combinations of those of some other sets Fi, F2, etc., then we shall say

that the set F0 is of a higher order than the sets Fi, F2, •••. Thus we

may distinguish probability sets of first, second, third, etc. order.

In Example 4 the set Fi is of first, and the set F2 of second order. In

Example 5 the sets Fi, F2, •••, Fn' are of first order and the set F0 of the

second. It is easy to construct examples in which there will be probability

sets of three or more successive orders.
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8 MATHEMATICAL STATISTICS AND PROBABILITY

In what I have just said I used the expressions "experiments," "results,"

"events," which were not directly involved in the definition of probability.

I want to emphasize that these expressions are no more than a picturesque

description of fundamental probability sets and that if purity of language

really were demanded, they should not be used. However, these and

similar expressions are very frequent in all works on probability. They

were established in olden days when the point of view regarding prob-

ability theory was somewhat different. We hold on to them now because

of their convenience. This point will be discussed later when I shall speak

of applications and of the law of large numbers.

We shall notice now that a description of a conceptual experiment, as in

the above examples, amounts really to a description of probability sets.

As the sets were classified, so will be classified the corresponding hypo-

thetical experiments. Therefore we shall speak of experiments of the first,

second, third, • • • order.

In order to clear away any possible misunderstanding, let us consider

again the probability sets involved in the last two examples, and illustrate

them graphically. The set Fi of Example 4 may be represented by the

use of the letter s for "six," and the letter r for "not-six." With n = 12,

we might have the following picture:

r—r—r—r—r—r—r—r—r— r — s — s

1 2 3 4 5 6 7 8 9 10 11 12

The numbers 1 to 12 below the line represent the ordinal numbers of the

elements of Fi.

To represent F2 diagrammatically it will be convenient to use two dimen-

sions. Each element of F2 is represented by rr, rs, sr, or ss. The rectangular

coordinates x and y of an element of F2 are equal to the ordinal numbers

of the two elements of Fi making up this element of F2. As x can never

be equal to y, i.e., no element of Fi is to be repeated, it is permissible to

take x > y. There will be only one element of F2 possessing the property

"six-six" (ss), that composed of the eleventh and twelfth elements of Fv

It may be seen from Figure 1 that the number of elements forming F2 is

66 and that, therefore, P{six, six | F2} = %6, which agrees perfectly with

formula (4) above, if n therein be set equal to 12.

We may now illustrate the connection between the probability sets F0

and Fi, F2, • • •, Fn' of Example 5. Let us put k = n = 2, m = 6, p = 1/6,

so that among the six elements forming either Fi or F2 there will be only

one possessing the property E, the other five, denoted by G, being non-E.

Let E in both sets be the 6th element. Any element of F0 is formed by

combining an element of Fi with some element of F2. Therefore, it will

be convenient to represent each element of F0 by a point on a plane whose
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coordinates x and y are equal to the ordinal numbers of the elements of

F\ and F2, the combination of which produces the element of F0 under

consideration (see Figure 2). All the elements of F0 possess the required

property of being composed of elements of F\ and F2, but only one of

the 36 is EE. The resulting probability P2•2 = %e is in agreement with

the binomial formula (6).

Figure 2
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X

I hope that it is not necessary to insist that the above results, namely,

and

P{EE | F2] = P{six, six | F2\ = -fa (Ex. 4)

P{EE | F0\ - P{six, six | F0\ - fa (Ex. 5)

(7)

(8)

do not represent any sort of paradox. Both probabilities are calculated

correctly and they differ only because they refer to different probability

sets, F2 and F0. This emphasizes the fact that probabilities refer to prob-
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10 MATHEMATICAL STATISTICS AND PROBABILITY

ability sets and that failure to specify the probability set properly may,

and usually does, cause misunderstanding.

Example 6.—The inclusion of the present example is occasioned by cer-

tain statements of Harold Jeffreys 3 which suggest that, in spite of my

insistence on the phrase, "probability that an object A will possess the

property B," and in spite of the five foregoing examples, the definition of

probability given above may be misunderstood.

Jeffreys is an important proponent of the subjective theory of probability

designed to measure the "degree of reasonable belief." His ideas on the

subject are quite radical. He claims 4 that no consistent theory of prob-

ability is possible without the basic notion of degrees of reasonable belief.

His further contention is that proponents of theories of probabilities alter-

native to his own forget their definitions "before the ink is dry." 5 In

Jeffreys' opinion, they use the notion of reasonable belief without ever

noticing that they are using it and, by so doing, contradict the principles

which they have laid down at the outset.

The necessity of any given axiom in a mathematical theory is something

which is subject to proof. For example, it was possible to prove that many

of the theorems taught for decades in calculus depend on the famous axiom

of Zermelo which by itself seems very doubtful to many mathematicians.

The method of proof is as follows: One assumes that a given theorem is

true and then deduces that the axiom subject to doubt must be true also.

However, Dr. Jeffreys' contention that the notion of degrees of reasonable

belief and his Axiom 16 are necessary for the development of the theory

of probability is not backed by any attempt at proof. Instead, he considers

definitions of probability alternative to his own and attempts to show by

example that, if these definitions are adhered to, the results of their appli-

cation would be totally unreasonable and unacceptable to anyone. Some

of the examples are striking. On page 300, Jeffreys refers to an article of

mine7 in which probability is defined exactly as it is in the present volume.

Jeffreys writes:

The first definition is sometimes called the "classical" one, and is stated in much

modern work, notably that of J. Neyman.

8 Harold Jeffreys: Theory of probability. Clarendon Press, Oxford, 1939, vi + 380 pp.

* Jeffreys, op. cit., p. 300.

6 Jeffreys, op. cit., p. 303.

6"Given p, q is either more or less probable than r, or both are equally probable;

and no two of these alternatives can be true." Jeffreys, op. cit., p. 16.

7 J. Neyman: "Outline of a theory of statistical estimation based on the classical

theory of probability." Phil. Trans. Roy. Soc. London, Ser. A, Vol. 236 (1937), pp.

333-380.
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TESTS OF STATISTICAL HYPOTHESES 11

However, Jeffreys does not quote the definition that I use but chooses

to reword it as follows:

If there are n possible alternatives, for m of which p is true, then the probability of

p is denned to be m/n.

He goes on to say:

The first definition appears at the beginning of De Moivre's book (Doctrine of

Chances, 1738). It often gives a definite value to a probability; the trouble is that the

value is one that its user immediately rejects. Thus suppose that we are considering

two boxes, one containing one white and one black ball, and the other one white and

two black. A box is to be selected at random and then a ball at random from that box.

What is the probability that the ball will be white? There are five balls, two of which

are white. Therefore, according to the definition, the probability is 2/5. But most

statistical writers, including, I think, most of those that professedly accept the definition,

would give (%) • (%) + (%) • (%) = %2. This follows at once on the present theory,

the terms representing two applications of the product rule to give the probability of

drawing each of the two white balls. These are then added by the addition rule. But

the proposition cannot be expressed as the disjunction of five alternatives out of twelve.

My attention was called to this point by Miss J. Hosiasson.

The solution, 2/5, suggested by Jeffreys as the result of an allegedly

strict application of my definition of probability is obviously wrong. The

mistake seems to be due to Jeffreys' apparently harmless rewording of the

definition. If we adhere to the original wording and, in particular, to the

phrase "probability of an object A having the property B," then, prior to

attempting a solution, we would probably ask ourselves the questions:

"What are the 'objects A' in this particular case?" and "What is the

'property B,' the probability of which it is desired to compute?" Once

these questions have been asked, the answer to them usually follows and

determines the solution.

In the particular example of Dr. Jeffreys, the objects A are obviously

not balls, but pairs of random selections, the first of a box and the second

of a ball. If we like to state the problem without dangerous abbreviations,

the probability sought is that of a pair of selections ending with a white

ball. All the conditions of there being two boxes, the first with two balls

only and the second with three, etc., must be interpreted as picturesque

descriptions of the F.P.S. of pairs of selections. The elements of this set

fall into four categories, conveniently described by pairs of symbols (1,10),

(1,6), (2, w), (2,6), so that, for example, (2, w) stands for a pair of

selections in which the second box was selected in the first instance, and

then this was followed by the selection of the white ball. Denote by

Wi,«,, nifi, n2,io and n2,& the (unknown) numbers of the elements of F.P.S.
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12 MATHEMATICAL STATISTICS AND PROBABILITY

belonging to each of the above categories, and by n their sum. Then the

probability sought is

P[w | pair of selections} = —^ — • (9)

The conditions of the problem imply

P{11 pair of selections} = —— — = -•

n 2

(10)

P{2 I pair of selections} = —— = -, (11)

n 2

P{w | pair of selections beginning with box No. 1} = — = -• (12)

niiU, + ni,6 2

« -I

P{w | pair of selections beginning with box No. 2} = y^ = -• (13)

It follows

»i,w = i(»l.« + »1.») = Tn, (14)

n2,w = ^fe,™ + n2,b) = -ffn, (15)

P{w | pair of selections} = -j^. (16)

The method of computing probability used here is a direct enumeration

of elements of the F.P.S. For this reason it is called the "direct method."

As we can see from this particular example, the direct method is occasion-

ally cumbersome and the correct solution is more easily reached through

the application of certain theorems basic in the theory of probability. These

theorems, the addition theorem and the multiplication theorem, are very

easy to apply, with the result that students frequently manage to learn the

machinery of application without understanding the theorems. To check

whether or not a student does understand the theorems, it is advisable to

ask him to solve problems by the direct method. If he cannot, then he

does not understand what he is doing.

Checks of this kind were part of the regular program of instruction in

Warsaw where Miss Hosiasson was one of my assistants. Miss Hosiasson

was a very talented lady who has written several interesting contributions

to the theory of probability. One of these papers 8 deals specifically with

sjanina Hosiasson: "Quelques remarques sur la dependance des probabilities a pos-

teriori de celles a priori." CM., Premier Congres des Math, des Pays Slaves, Warszawa,

1929, pp. 375-382.
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TESTS OF STATISTICAL HYPOTHESES 13

various misunderstandings which, under the high sounding name of para-

doxes, still litter the scientific books and journals. Most of these para-

doxes originate from lack of precision in stating the conditions of the

problems studied. In these circumstances, it is most unlikely that Miss

Hosiasson could fail in the application of the direct method to a simple

problem like the one described by Dr. Jeffreys. On the other hand, I can

well imagine Miss Hosiasson making a somewhat mischievous joke.

Some of the paradoxes solved by Miss Hosiasson are quite amusing.

The facility with which one is able to resolve these paradoxes may serve

as a test as to whether or not the definition of probability is properly

understood. The following paradox is taken from the "Treatise on Prob-

ability" by J. M. Keynes (London, 1921, p. 378). Like Dr. Jeffreys, Lord

Keynes was also a proponent of the subjective theory of probability.

Consider an urn U of which it is known that it contains exactly n balls.

About the color of the balls no information is available. Denote by m the

number of black balls in the urn. Because of the complete lack of infor-

mation as to the color of the balls and since there are n + 1 possible

hypotheses about the value of m, namely m = 0, 1, 2, • • •, n, the subjective

theory of probability ascribes to each of these hypotheses the same prob-

ability, namely l/(n + l). Granting this, it is easy to show that the

probability, say P(B) that a ball drawn from the urn will be black is

P(B) = y2. This conclusion, by itself, is not questioned. However, Lord

Keynes seems to have been puzzled by the circumstance that what applies

to black balls should equally apply to white balls and yellow balls.

Therefore, if we denote by P{W} and P{Y) the probabilities that the

ball drawn will be white and that it will be yellow, respectively, then

P{W} = P{Y} = P{B) = y2.

Further, since the colors white, yellow and black are exclusive, the prob-

ability that the ball drawn will be either black, white or yellow would

appear to have the absurd value P{B + W + Y) = 1.5. How come? The

reader may wish to try to resolve this "paradox" on his own. If he does

not succeed, then he may find it interesting to consult the paper of Miss

Hosiasson.

2. More general definition of probability. The foregoing definitions

and examples are perhaps sufficient to explain the basic ideas underlying

the theory of probability when the fundamental probability set is finite.

Let us now turn to the more general case and assume that the F.P.S., say

(A), is anything, finite or infinite. As formerly, let us denote by (B) the

set of elements of (A) that have some distinctive property B.

The definition of probability I am going to give will apply only to cer-

tain sets (A) and to certain properties B, not to all possible ones. In fact,

we shall require that the following postulates be satisfied by the class of
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14 MATHEMATICAL STATISTICS AND PROBABILITY

subsets (B) of A which correspond to the properties B for which the prob-

ability will be defined. This class will be denoted by ((B)).

It will be assumed

(1) that the class ((B)) includes (A) so that (A) is an element of ((B)).

(2) that for the class ((B)) it is possible to define a single-valued function

m(B), called the measure of (B), wherefore the sets (B) belonging

to the class ((B)) will be called measurable. The assumed prop-

erties of the measure are as follows:

(a) Whatever be (B) of the class ((B)), m(B) ^ 0.

(b) If (B) is empty (does not contain any element at all), then it is

measurable and m(B) = 0.

(c) The measure of (A) is greater than zero.

(d) If (Bi), (B2), •••, (Bn), • • • is any at most denumerable set of

measurable subsets, then their sum, (SB,), is also measurable.

If no two subsets (Bt) and (Bj) (where i j£ j), have common

elements, then m(2B,) = Sm(B,).

(e) If (B) is measurable, then the set (B) of objects A not possessing

the property B is also measurable and consequently, owing to

(d), m(B) + m(B) = m(A).

Under the above conditions the probability, P{B | A} of an object A

having the property B will be denned as the ratio

P[B\A]

m(B)

m(A)

The probability P{B \A}, or P{B} for short, may be called the abso-

lute probability of the property B. Denote by B1B2 the property of A

consisting in the presence of both Bt and B2. It is easy to show that

if (Si) and (B2) are both measurable, then (BiB2) will be measurable

also. If m(B2) > 0 then the ratio, say

m(B1B2)

P{Bi B2) = -Li*

m(B2)

will be called the relative probability of Bi given B2. This definition of

the relative probability applies when the measure m(B2) as defined for

the fundamental probability set (A) is not equal to zero. If, however,

m(B2) = 0, but we are able to define some other measure, say m', applicable

to (B2) and to a class of its subsets including (BiB2) such that m'(B2) > 0,

then the relative probability of Bi given B2 will be defined as
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TESTS OF STATISTICAL HYPOTHESES 15

'(B2)

Whatever may be the case we shall have

PfBiB,} = P{B,}P{B2 | Bi) = P{B2}P{B1 \ B2}. (17)

It is easy to see that if the fundamental probability set is finite, then

the number of elements in any of its subsets will satisfy the definition of

measure. On the other hand, if (A) is the set of points filling up a certain

region in n-dimensional space, then the measures of Borel and of Lebesgue

will satisfy the definition used here.

If the objects A are not points (e.g., if they are certain lines, etc.), the

above definition of probability can still be applied, provided it is possible

to define a measure over a class of subsets of (A). One way of achieving

this, which is frequently applicable, is to establish a one-to-one correspond-

ence between the objects of (A) and some other objects (A') for which a

measure has already been defined. If (B') is any measurable subset of

(A') and (B) the corresponding subset of (A), then the measure of (B)

can be defined to be equal to that of {B').

If a one-to-one correspondence between (A) and (A') can be established

at all, then it usually will be easy to establish it in more than one way and

each definition of correspondence between objects A and objects A' will

imply, or as one occasionally says, induce a new definition of measure for

subsets of (A). This, for instance, is the case when the objects A are chords

in a circle C of radius r and objects A' points in a plane. It may be useful

to consider two of the possible ways of establishing a one-to-one corre-

spondence between the chords and the points leading to two different defini-

tions of measure of the subsets of chords. Specifically, we will discuss the

so-called Bertrand's problem which consists in determining the probability

that a chord drawn "at random" in the circle C will have its length 2h

greater than some specified value 2fc < 2r.

(i) Denote by x the angle between a fixed direction and the radius per-

pendicular to any given chord A, in a circle of radius r. Further, let y

be the perpendicular distance of the chord A from the centre of the circle C.

Now let A' denote a point on the xy plane with coordinates x and y; then

there will be a one-to-one correspondence between the chords (A) of length

0 s 2h £ 2r and the points of a rectangle, say (A'), defined by two pairs

of conditions [(O^z < w) (Ogi/gr)] and [(«.§*< 2ir) (0 < ySr)]. The

class of measurable subsets of chords may now be defined to be com-

posed of all such subsets which correspond to subsets of (A') that are

measurable in the sense of Borel. This includes the subset (AB) of chords
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MATHEMATICAL STATISTICS AND PROBABILITY

with lengths 2h > 2k. In fact, these chords correspond to points, say A'B'

in (A') with their coordinate y < Vr2 — fc2. The set of points (A'B')

fills in a rectangle (apart from some points on the boundary) and its Borel

measure is equal to the area of this rectangle, namely 2-n\/r2 — k2. It

follows that the probability in which we are interested is P{h > k} =

Vl - (k/r)2.

(ii) Denote by x and y the angles between a fixed direction and the radii

pointing towards the two ends of a given chord A. If A" denotes a point

on a plane with coordinates x and y, then there exists a one-to-one corre-

Fiqube 3

Solution 1.—Here the set (A) of chorda is mapped on the rectangle (A'), the correspond-

ence between chords and points in (A') being a one-to-one correspondence.

spondence between the chords of the set (A) and the points within the

parallelogram (A") (see Figure 4) determined by the two pairs of condi-

tions [ (0 g x < *.) (x i y i x + w) ] and [ (w £ x < 2w) (x £ y < x + x) ]. If

(Ai") is a subset of (A") which is measurable in the sense of Borel and

if (Ai) is the corresponding subset of chords, then define (A1) as measur-

able and let the measure m(Ai) be equal to the Borel measure of (Ai').

The points in (A") which correspond to chords with lengths exceeding 2fc

lie above the dotted line y = x + 2 arc sin k/r. Since these points fill in

a parallelogram, the set is measurable and its Borel measure coincides with

the area of the parallelogram, namely 2x(x — 2 arc sin k/r). Since the

measure of the entire set (A) is equal to that of the entire set (A") which

is 2tt2, it follows that the probability P{h > fc} = 1 — (2/t) arc sin k/r.

It is seen that the two solutions differ and it may be asked which of

them is correct. The answer is that both are correct, but that they corre-

spond to different conditions of the problem. In fact the question "what

is the probability of a chord having its length greater than 2k" does not

specify the problem entirely. This problem is only determined when we

define the measure appropriate to the set (A) and the subsets of (A) to

be considered. We may describe this differently, using the terms "random
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experiments" and "their results." We may say that to have a problem

of probability determined, it is necessary to define the method by which

the randomness of an experiment is attained. Describing the conditions of

the problem concerning the length of a chord that lead to the first solution

(Figure 3), we could say that in selecting at random a chord A, we first

pick at random the direction of a radius, all directions being "equally

Solution 2.—Here the set (A) of chords is mapped on the parallelogram (A"), the cor-

respondence between chords and points in (A") being a one-to-one correspondence. •

probable," and then, also at random, we select the distance between the

centre of the circle and the chord, all values between zero and r being

"equally probable." It is easy to see what would be the description in the

same language of the random experiment leading to the second solution

(Figure 4).

We frequently use this way of speaking, but it is necessary to remember

that behind such words, as e.g., "picking at random a direction, all of them

being equally probable," there is a definition of the measure appropriate

to the fundamental probability set and its subsets. I want to emphasize

that in all my writings a phrase like the previous one in quotation marks is

no more than a way of describing the fundamental probability set and its

appropriate measure. The concept "equally probable" is not in any way
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involved in the definition of probability adopted and it is a pure conven-

tion that the statement

"In picking a chord at ran-

dom, we first select a direc-

tion, all directions being

equally probable; and then

we choose a distance bet-

tween the centre of the cir-

cle and the chord, all values

of the distance between

zero and r being equally

probable."

Means no

more and

no less

than

"For the purpose of calculating the

probabilities concerning chords in a

circle, the measure of any set (A) of

chords is defined as that of the set

(A') of points, each with coordinates

x and y and such that for any chord

A in (A), x is the direction of the

radius perpendicular to A and y the

distance of A from the centre of the

circle. (A) is measurable only if

L(A')isBO."

However free we are in mathematical work to use words that we find

convenient as long as they are clearly defined, our choice must be justified

in one way or another. The justification for speaking of the definition of

measure within the fundamental probability set in terms of imaginary

random experiments lies in the empirical fact which Bortkiewicz 9 insisted

upon calling the "law of large numbers." This law says that, given a

purely mathematical definition of a probability set including the appro-

priate measure, we are able to construct a real experiment, possible to carry

out in any laboratory, with a certain range of possible results and such

that if it is repeated many times, the relative frequencies of these results

and their different combinations in small series approach closely the values

of probabilities as calculated from the definition of the fundamental prob-

ability set. Examples of such real random experiments are provided by

the experience of roulette,10 by the experiment of throwing a needle " so

as to obtain an analogy to the problem of Buffon, and by various sampling

experiments based on Tippett's random numbers.12

These examples show that random experiments corresponding in the

sense described to mathematically defined probability sets are possible.

However, frequently they are technically difficult. E.g., if we take any

coin and toss it many times, it is very probable that the frequency of heads

will not approach 1/2. To get this result we must select what could be

called a well-balanced coin and we must work out an appropriate method

9L. von Bortkiewicz: Die Iterationen. Julius Springer, Berlin, 1917, x + 205 pp.

10 Bortkiewicz, loc. cit.

11 This is mentioned by fi. Borel, Elements de la Theorie des Probabilites, Hermann,

Paris, 1909, vii + 205 pp. Cf. p. 106.

12 L. H. C. Tippett: "Random sampling numbers." Tracts for Computers, No. XV,

Cambridge University Press, 1927, viii + 26 pp.
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of tossing. Whenever we succeed in arranging the technique of a random

experiment, such that the relative frequencies of its different results in

long series approach, sufficiently in our opinion, the probabilities calculated

from a fundamental probability set (A), we shall say that the set ade-

quately represents the method of carrying out the experiment.

We shall now draw a few obvious but important conclusions from the

definition of probability which we have adopted.

(1) If the fundamental probability set consists of only one element, any

probability calculated with regard to this set must have the value either

zero or unity.

(2) If all elements of the fundamental probability set (A) possess a

certain property B0, then the absolute probability of B0, and also its relative

probability, given any other property Bi, must be equal to unity, so that

P{B0 | A) m P{Bo} = P{B0 | Bx} = 1. On the other hand, if it is known

only that P{B0) = 1, then it does not necessarily follow that P{B0 \ Bi)

must be equal to unity.

3. Random variables. We may now proceed to the definition of a ran-

dom variable. We shall say that x is a random variable if it is a single-

valued measurable function (not a constant) denned within the funda-

mental probability set (A) with the exception perhaps of a set of elements

of measure zero. We shall consider only cases where a; is a real numerical

function. If x is a random variable, then its value corresponding to any

given element A of (A) 'may be considered as a property of A, and what-

ever the real numbers a < 6, the definition of (A) will allow the calcula-

tion of the probability, say P{a^x< 6} of x having a value such that

aix < 6.

We notice also that as x is not constant in (.A), it is possible to find at

least one pair of elements, Ai and A2 of (A), such that the corresponding

values of x, say xi < x2 are different. If we denote by B the property

distinguishing both Ai and A2 from all other elements of (A), and if a < b

are two numbers such that a < xi < 6 < x2, then P{a ^ x < b | B} = y2.

It follows that if a; is a random variable in the sense of the above defi-

nition, then there must exist such properties B and such numbers a < b

that 0 < P{a s * < 6 | B) < 1.

It is obvious that the above two properties are equivalent to the definition

of a random variable. In fact, if x has the properties (a) that whatever

a < b the definition of the fundamental probability set (A) allows the

calculation of the probability P{a^x < b), and (b) that there are such

properties B and such numbers a < 6 that 0 < P{a^x <b\B] < 1, then

x is a random variable in the sense of the above definition.

The probability P{a^x < 6} considered as a function of a and b will

be called the integral probability law of x.
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20 MATHEMATICAL STATISTICS AND PROBABILITY

A random variable is contrasted with a constant, say 0, the numer-

ical values of which, corresponding to all elements of the set (A), are

all equal. If 0 is a constant, then whatever a < b and B, the probability

P{a^0 < 6 | B) may have only values unity or zero according to whether

0 falls in b^ween a and b or not.

If we keep in mind the above definitions of the variables in our discus-

sions of them, we may speak in terms of random experiments. In the sense

of the convention adopted previously, we may say that x is a random vari-

able when its values are determined by the results of a random experiment.

It is important to keep a clear distinction between random variables

and unknown constants. The 1000th decimal, Xio00, in the expansion of

it = 3.14159 • • • is a quantity unknown to me, but it is not a random

variable since its value is perfectly fixed, whatever fundamental probability

set we choose to consider. We could say alternatively that the value of

Xiooo does not depend upon the result of any random experiment.

Frequently we have to consider simultaneously several random variables

xu x2, . . •, xn (18)

and their simultaneous integral probability law, to be defined as follows.

Denote by E the set of values of the n variables (18). This set could

be represented by a point which will be called the sample point E in an

n-dimensional space, say W, the rectangular coordinates of the point E

being the values xu x2, • • ., xn. The space W will be called the sample

space. Denote by w any region in W and accept the convention that E t w

stands for the words: "the point E is an element of w."

If the xi are random variables, then whatever be w, we may speak of

the probability of E being an element of w, and denote it by P{Etw}.

In fact this probability will be represented by the ratio of the measure of

that part, say F(w), of the F.P.S. in which the xt have values locating the

point E within the boundaries of w to the measure of the F.P.S. itself. Of

course, it must be assumed that w is measurable. With that restriction

the probability, P{E ttc), is defined for every region w. This probability,

considered as a function of the region w, is called the simultaneous integral

probability law of the x4.

Apart from, or instead of, the integral probability law we may frequently

consider another function called the elementary probability law of the ran-

dom variables. This is defined as follows.

If P{E iw} stands for the integral probability law of the variables (18),

and if there exists a function p(E) of the x4 such that whatever be w, for

which the probability P{E tw} exists,

P{E ew] =)).• \v(E) dxu dx2 • • . dxn, (19)
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then the function p(E) is called the elementary probability law of the

random variables (18).

Remark: The terms "integral probability law" and "elementary prob-

ability law" were introduced in the 1920's by the noted French probabalist,

Paul Levy. In more recent times they are being partially replaced by

"distribution function" and "probability density function," respectively.

It will be noticed that while the integral probability law is a function

of the region w, the elementary probability law is a function only of the

point E. It will be noticed also that p(E) may be considered as being

defined in the whole sample space and non-negative. Of course there are

cases where no elementary probability law in the above sense exists; this,

however, happens rarely in problems of statistics.

It is important to know a few simple rules of dealing with elementary

probability laws.

(i) If p(xi, x2, •••, xn) and p(x\, x2, • • •, xn-i) are the elementary prob-

ability laws of

xi, x2, • • 'i xn—\, xn

and

*i, x2, •••, xn-i

(20)

respectively, then

p(xi, x2, •••, xn_!, xn) dxn. (21)

-»

This rule permits the calculation of the elementary probability law of any

single one of the xi whenever their simultaneous probability law is known,

(ii) If there are two sets of n random variables each,

xi,x2, •••,zn (22)

and

2/i, 2/2, •••,2/n (23)

such that each of the zt is a function of the yi, possessing continuous partial

derivatives with regard to any yi, the Jacobian

S(xi, x2 ••• xn)

A = -—! - (24)

5(2/i, 2/2 •• • 2/n)

existing and being different from zero almost everywhere and never chang-

ing its sign, then the probability laws p(xi, •••, xn) and p{yi, • • •, yn) of

the variables (22) and (23) respectively, are connected by the identity

PiVu 2/2, • •-, 2/„) = p(xh x2, - . -, xn)\ A | (25)

where in the right-hand side the xt will ordinarily be expressed in terms of

the yt.

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

0
 1

5
:4

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

7
2

9
7

9
8

2
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



22 MATHEMATICAL STATISTICS AND PROBABILITY

Combining the two above rules we may calculate the probability law of

various functions, f(E), of the xt whenever the simultaneous probability

law of the latter is known.

In order to clear the way for the material involved in the following lec-

tures, I shall finish this one by giving definitions relating to statistical

hypotheses.

Consider the set of random variables xu x2, •••, xn. Any assumption

concerning their probability law (either integral or elementary) is called

a statistical hypothesis.

A statistical hypothesis is called simple if it specifies the integral prob-

ability law, P{E t w} of the x< as a single-valued function of the region w.

Any statistical hypothesis that is not simple is called composite. It may

be useful to illustrate these definitions by some examples.

The assumption Hi that18

ME)=(-^)e~S{Xi^W2'i' (26)

where neither /* nor a > 0 is specified, is a composite statistical hypothesis.

In fact, if w denotes a region denned by the inequality

Sxf2 < 1,

then

P{E tw} = (—7=) f . fe~ ^'-"^''dx,. dx2---dxn (27)

is not uniquely determined but is a function of the parameters n and <r,

which are left unspecified by the hypothesis H\.

On the other hand, the assumption H2 that the elementary probability

law of the x< is as given by formula (26) but with /* = 0 and a = 1 is

already a simple hypothesis. In fact, whatever the region w in the sample

space, substituting p = 0 and <r = 1 in (27), we shall be able to calculate

the unique numerical value of P{Etw}, although at times this may be

connected with great technical difficulties.

Part 2. Probability and Experimentation

1. Abstract character of mathematical theories and possibilities of

applications. It is probable that many who listened to my first lecture

were disappointed. They are engaged in applying probability to practical

problems and such problems may be the only cause of their interest in the

13 The sign 2, unless accompanied by other indications, will signify summation over i

from 1 to n; i.e., i = 1, 2, •••, n.
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theory of probability. They may feel that they have no use for a theory

which treats "experiments," "results," or in fact everything that is of the

utmost importance to them only as picturesque descriptions of probability

sets and measures. Theory of this kind may be good for mathematicians,

they may say, but we want a mathematical theory dealing with actual

experiments, not with abstract probability sets.

It may be useful to start this lecture by considering more closely whether

or not it is possible to satisfy that part of my audience which is of the

opinion described. One might put the question this way: Is it possible to

produce a mathematical theory dealing with actual experiments or, more

generally, with phenomena of actual life?

My answer is: Probably never. That is, unless the word mathematics

changes its present meaning. The objects in a real world, or rather our

sensations connected with them, are always more or less vague and since

the time of Kant it has been realized that no general statement concerning

them is possible. The human mind grew tired of this vagueness and con-

structed a science from which anything that is vague is excluded—this is

mathematics. But the gain in generality must be paid for, and the price

is the abstractness of the concepts with which mathematics deals and the

hypothetical character of the results: if A is B and B is C, then A is also C.

Of course, there are many mathematical theories that are successfully

applied to practical problems. But this does not mean that these theories

deal with real objects. If they did, they could not involve general state-

ments and could not be considered as mathematical. Let us illustrate this

by a few examples. Modern geometry is a mathematical science and is

applied to practical problems. But does it deal with objects that we meet

in actual life? Let us see. Geometry deals with such concepts as planes,

straight lines, points, etc. Is there anything in real life that is exactly a

plane in the sense of geometry? We say sometimes that the surface of a

table is a plane. But if we look at the surface through a good magnifying

glass we shall immediately see that it is certainly not a plane. If we say

that it is, we mean that for practical purposes it could be considered a plane.

Here we come to the essential point: when we apply mathematics to

practical problems we never seek (and if we would, we should never suc-

ceed) to find an identity between mathematical concepts and realities; we

are satisfied if we find some correspondence between them, by which a

mathematical formula can be interpreted in terms of realities and give a

result which, for practical purposes, would in our opinion be sufficiently

accurate.

Consider a triangle Tt formed by three points on this sheet of paper.

Divide it by straight lines into four smaller triangles T2, T3, T* and T5.

If we state numerically the coordinates of all the vertices, we shall be able
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24 MATHEMATICAL STATISTICS AND PROBABILITY

to apply known formulas and calculate the areas of all the five triangles.

Naturally, the area of T1 will be equal to the sum of the areas of the other

four. This is geometry. But now take any instruments you desire and

measure the sides of all the triangles as actually drawn. Using these meas-

urements and again applying formulas we may be disappointed to find that

the area of Ti so calculated is not exactly equal to the sum of the areas

of T2, T3, T4 and Ts.

It will be suggested that the discrepancy is due to errors of measurement.

This is true so far as the expression "errors of measurements" stands for

something broader, including the fact that the dots representing the vertices

of the triangles are not the points we consider in mathematics. However,

for many practical purposes the agreement between the area of Ti and the

sum of areas of T2, Ts, T* and Ts will be judged satisfactory and this is

the decisive point in the question of whether or not the mathematical theory

of geometry can be applied in practice.

A closer examination of other mathematical theories applied to practical

problems will reveal the same features. The theory itself deals with abstract

concepts not existing in the real world. But there are real objects that

correspond to these abstract concepts in a certain sense, and numerical

values of mathematical formulas more or less agree with the results of

actual measurements. In the earlier stages of any branch of mathematically

treated natural science we are satisfied with only a slight resemblance

between mathematical and empirical results, but later on our requirements

become more and more stringent.

After this somewhat long general introduction we may turn to the main

topic of this lecture which is whether, and if so, how the mathematical

theory of probability can be usefully applied in natural science.

2. Random experiments and the empirical law of large numbers. It

follows from what I said that the foundations of the theory of probability

could be chosen in many ways. But however they are chosen, if their

accuracy is on the level now customary in mathematics, the theory of

probability will deal with abstract concepts and not with any real objects.

Therefore, the application of such a theory will be possible only if one can

establish a bridge or a correspondence between concepts of the theory and

real facts. The actual applications must be preceded by numerous checks

and rechecks of the permanency and the accuracy of such correspondence.

If one judges this to be sufficiently accurate and finds it sufficiently perma-

nent, then the predictions—the final aim of any science—based on the

mathematical theory of probability, will have some prospect of success.

Otherwise the theory may be interesting by itself, but useless from the

point of view of application.

What, then, is the class of facts that corresponds to concepts of the
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theory of probability as described in my first lecture? What is the meaning

of this correspondence?

The class of such facts may be described as the results of random experi-

ments. It is impossible to give an exact definition of experiments that are

called random, but it would be equally impossible to give a definition of

objects in the real world that deserve the description "plane," "straight

line," etc. If we try to do so, we shall inevitably find ourselves speaking

not of real objects but of abstract concepts. At most we can give a rough

description of random experiments and some illustrations so as to appeal

to the intuition. In what follows, unless otherwise stated, whenever I shall

speak of experiments I shall mean real experiments, not hypothetical ones.

There are experiments which, even if carried out repeatedly with the

utmost care to keep conditions constant, yield varying results. They are

"random."

(a) We may construct a special machine to toss coins. This machine

may be very strong, driven by an electric motor so as to impart a con-

stant initial velocity to the coin. The experiments may be carried on in a

closed room with no noticeable air currents; the coin may be put into the

machine always in the same way; and even then I am practically certain

the results of the repeated experiments will vary. Perhaps frequently we

may get heads, but from time to time the coin will fall tails. The experi-

menter may be inclined to think that these cases arise from some "error of

experimentation."

(b) Another example of this kind is provided by roulette. A well-con-

structed roulette wheel with an electrically regulated start will yield varying

results.

(c) The above were types of random experiments arranged by men. But

there are some going spontaneously. Consider a quantity of radioactive

matter and the a particles it emits in some specified direction within a

cone of small solid angle. These particles could be recorded by the fluo-

rescence they produce when falling on an appropriate screen. Let us

observe this screen for several consecutive minutes, one minute's observa-

tion being considered as a single experiment. It will be found that how-

ever constant be the conditions of the consecutive experiments, the results

will vary in that the number of disintegrations recorded per minute will

not be the same.

(d) Another example of this kind is provided by the varying properties

of organisms forming an F2 generation, however homogeneous be the con-

ditions of breeding.

These examples may make sufficiently clear what I mean by random

experiments. Now I shall explain the sense in which their results correspond

to concepts involved in the theory of probability.
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26 MATHEMATICAL STATISTICS AND PROBABILITY

Let N and n be positive integers, N fairly large, say 1000 or so, and

n moderate, say 10. Let us perform a long series of Nn random experiments

of the type described, and count cases where a certain specified result E

occurred. Let it be in M cases. Dividing M by Nn we obtain the ratio

M

'-Si (1)

which will be called the relative frequency of the result E in the course of

Nn trials. These Nn trials will be called experiments of the first order.

Now divide the whole series of Nn first order experiments into N groups of

n trials each in the order in which the trials were carried out. Each such

group of n first order trials will now be considered as a trial of second order.

The second order trials could be classified according to the number fc of

occurrences of the result E in the n first order trials of which they are

formed. Obviously fc could be equal to 0, 1, 2, • • •, n, in any one of the

second order trials. Let mk denote the number of trials in which E occurred

exactly fc times, and

Fn,k-— (2)

the relative frequency in the series of second order trials.

It is a surprising and very important empirical fact that whenever suffi-

cient care is taken to carry out the first order experiments under as uniform

conditions as possible, and when the number N is large, then the relative

frequency Fn,k appears to be very nearly equal to the familiar formula

i nLi»(i~^""y. (3)

(n - k)lkl

In other words, the relative frequency Fnilc relating to a series of second

order experiments is connected with the relative frequency of the first

order experiments in very nearly the same way as the probability Pn,k

relating to the second order probability set, as discussed in my first lecture,

is connected with the probability p referring to the corresponding first order

probability set.

In order to avoid misunderstanding, let us describe the situation in

greater detail. Suppose that the random experiment under consideration

consists in 2N throws of the same die and that / is the relative frequency

of cases where the upper side of the die had six points on it. The value

of / may be close to 1/6 or not. It may, in fact, differ considerably from

1/6, depending on the structure of the die and the exact conditions of

throwing. But if we split the whole series of trials into consecutive pairs,

then the proportions of pairs with 0, 1 and 2 sixes will be, approximately,
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(l-/)2, 2/(1-/) and /2. (4)

The above fact, which has been found empirically1 many times, could

be described in a more general way by saying that single random experi-

ments and the various groups of these experiments usually behave as if

they tended to reproduce certain first order probability sets, corresponding

to first order trials, and the appropriate second order probability set. This

fact may be called the empirical law of large numbers. I want to empha-

size that this law applies not only to the simple case connected with the

binomial formula which was discussed above but also to other cases. In

fact, this law seems to be perfectly general, in the sense in which we use

the word general with respect to any other "general law" observed in the

outside world. Whenever the law fails, we explain the failure by suspecting

a "lack of randomness" in the first order trials.

Suppose now that having repeatedly performed series of random experi-

ments of some specified kind we have always found that they do conform

to the empirical law of large numbers. Then, as is our custom, we expect

them to behave similarly in the future, and we expect the calculus of prob-

ability to permit us to make successful predictions of frequencies of results

of future series of experiments.

This is the way in which the abstract theory of probability described in

my first lecture may be put into correspondence with happenings in the

outside world and how it may be, and actually is, applied to solve problems

of practical importance. The standing of the theory of probability is, in

this respect, no different from any other branch of mathematics. The appli-

cation of the theory involves the following steps.

(i) If we wish to treat certain phenomena by means of the theory of

probability we must find some element of these phenomena that could be

considered as random, following the law of large numbers. This involves

a construction of a mathematical model of the phenomena involving one

or more probability sets.

(ii) The mathematical model may be satisfactory or not. This must

be checked by observation.

(iii) If the mathematical model is found satisfactory, then it may be

used for deductions concerning phenomena to be observed in the future.

Let us illustrate these steps by a few examples taken from the current

literature.

3. Illustrations. Example 1.—Two bacteriologist friends of mine, Miss

J. Supinska and Dr. T. Matuszewski, were interested in learning whether

the calculus of probability could be applied to certain problems concerning

1 See, for example, L. von Bortkiewicz, Die Iterationen, Julius Springer, Berlin, 1917,

x + 205 pp.
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the colonies of bacteria on a Petri-plate. The diagram reproduces a photo-

graph of a Petri-plate with colonies that are visible as dark spots.

You will notice that the plate is divided into a number of small squares.

In order to explain the particular mathematical model that was tried in

this instance, consider the contents v of one particular square and consider

one particular living bacterium B contained in the liquid that was poured

on the plate. In the mathematical model all the operations performed with

the liquid and the plate which resulted in fixing the bacterium B in some

point are considered as a first order experiment which may result either in

B falling within v, or not. If there were N living bacteria in the liquid

poured on to the plate, then there were N such first order experiments all

relating to the same square v. They form a single second order experiment.

Finally, if the number of squares in which the plate is divided be n, then

there will be n second order experiments, which, taken together, could be

considered as one third order experiment. Without going into further

details of this mathematical model I shall state that it implies that the

probability of any of the squares containing exactly k colonies must be

approximately equal to the Poisson formula

Pt =

e-xX*

k\

(5)

where A. means the average number of colonies per square. The reader will

notice that the above k satisfies the definition of a random variable the

integral probability law of which is given by

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

0
 1

5
:4

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

7
2

9
7

9
8

2
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



TESTS OF STATISTICAL HYPOTHESES 29

b-i ^k

P{a g k < b) = £ «~X — for 0 g a < 6. (6)

it-a fc!

If this mathematical model could be assumed to correspond accurately to

the actual experiments in the sense explained above, then it could be used

for predicting frequencies of certain circumstances that are important in

bacteriology. One of the questions that my colleagues had in mind was

how frequently a single colony is produced by two or more unconnected

bacteria.

In order to answer the question whether or not the number fc of colonies

within a square could be considered as a random variable whose prob-

ability law could be represented by formula (5), my colleagues performed

a series of experiments summarized in Table I.

The values of fc are the numbers of colonies within the squares into

which the whole plate was divided, m' and m denote respectively the

observed and the expected numbers of squares having the number fc of

colonies. The last two lines give measures of the goodness of fit, the chi-

square and the corresponding P. It is seen that without exception the

agreement between the observed and the theoretical frequencies obtained

by multiplying the Pk of formula (5) by the total number of squares on

the plate, is surprisingly good. As a matter of fact, the total number of

similar experiments that have been carried out is much larger, and in not

a single case has any serious disagreement between the distribution of

colonies and the Poisson law been recorded. This entitles us to expect that

the results of future experiments will be similar, and that conclusions con-

cerning these future experiments drawn from the mathematical model

described above, will be correct, or good enough.

If the model implies that in a particular case the probability of a colony

arising from more than one independently floating individual is for instance

P = .001, we may conclude that about 99.9 percent of the colonies were

produced by one individual only.

For the sake of clearness I may mention that in the above statement

"one individual" does not necessarily mean one cell. This expression refers

to one or more cells that are floating together, being connected either

mechanically or biologically.

Example 2.—Table II is reproduced from an article in Biometrika, and

represents a comparison between the Poisson law, formula (5), and the

distribution of dodder in samples of clover seed. The problem and the

mathematical model were similar to that treated above.

The table gives 12 comparisons, of which eleven are based on material

produced by Schindler and the last by the authors of the article, J. Przybo-

rowski and H. Wilenski. It will be seen that the material as a whole is
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Table I

Comparison of distribution of colonies with Poisson Law

[T. Matuszewski, J. Supinska and J. Neyman, Zentralblatt fur Bakleriologie,

Parasitenkunde und Infektionskrankheiten. II. Abteilung, 1936, Bd. 95].

k

Plate 1

Plate 2

Plate 3

Plate 4

Plate 5

0

0

0

0

0

0

m!

0

m'

0

0

5

19

26

26

21

13

6.1

18.0

26.7

26.4

19.6

11.7

26

40

38

17

27.5

42.2

32.5

16.7

59

86

49

30

55.6

82.2

60.8

30.0

83

75.0

144.5

139.4

89.7

43.3

16.7

{I

J0.7

13.9

11.0

20.9

29.6

34.0

31.8

25.8

18.3

11.6

6.7

1

134

2

135

9

23

33

32

32

24

13

12

3

101

4

11

40

5

+9.1

+ 15.4

16

6

1!

I

7

+9.5

+7.4

8

9

10

8

11

[I

12

+5.7

x2

Plate 6

0.77

0.97

Plate 7

1.61

0.66

Plate 8

4.05

0.26

Plate 9

3.47

0.63

Plate 10

4.94

0.84

k

0

0

0

0

0

0

m'

0

0

0

0

8

6.8

16.2

19.2

15.1

1 °

Il0.3

7

11

11

11

3.9

10.4

13.7

12.0

3

2.1

8.2

15.8

20.2

19.5

15.0

9.6

60

80

45

16

62.6

75.8

45.8

18.5

1

2

3

4

5

6

7

8

9

10

16

112

7

18

18

13

27

19

16

16.7

22.4

22.7

18.3

12.3

14

15

21

9

9.0

7

7.9

20

1?

4

[3

2

1

1

19

+7.3

2

7

0

+6.7

it

+7.1

6

1

+13.3

1

Li

0

+9.6

x2

Px*

0.30

0.97

6.67

0.25

3.21

0.53

2

2.63

0.85

1.09

0.78

k = number of colonies per square,

m' = observed frequency,

m = expected frequency (Poisson).
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Table II

Comparison of the distribution of dodder seeds in samples of clover with Poisson Law

[J. Przyborowski and H. Wilenski, Biometrika, Vol. 27, 1935, p. 277]

k

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Nk

N.Pk

Nk

NPk

Nk

N.Pk

Nk

NPk

Nk

NPk

0

168

183.94

599

606.53

382

389.40

284

303.27

795

774.64

1

205

183.94

315

303.27

111

97.35

170

151.63

94

116.20

2

94

91.97

74

75.82

7

[ 12.17

1+1.08

39

37.91

11

1 8.71

1 0.45

3

26

30.66

12

I 12.64

1+1.74

7

1 6.32

1+0.87

4

6

7.66

5

1

1.53

Over 5

1+0.30

x2

5.20

0.98

5.00

3.49

5.13

*v

Sample 6

0.160

Sample 7

0.600

Sample 8

0.000

Sample 9

0.180

Sample 10

0.000

it

Nk

N.Pk

Nk

NPk

Nk

NPk

Nk

N.Pk

Nk

NPk

0

447

452.42

473

475.61

295

303.27

22

16.42

0

1.08

i

51

45.24

26

23.78

153

151.63

29

41.04

3

5.39

2

2

1 2.26

+ 1

+0.61

44

37.91

55

51.30

13

13.48

3

1+0.08

8

| 6.32

43

42.75

15

22.46

4

1+0.87

34

26.72

33

28.07

5

10

13.36

28

28.07

6

3

(5.57

24

23.40

7

4

11.99

21

16.71

8

[0.85

10

10.44

9

8

1 5.80

1+5.10

10

+5

x2

0.85

0.47

1.31

8.76

7.04

*V

0.198

0.319

0.533

0.120

0.532

k = number of dodder seeds in a sample.

Nk = observed frequency.

JV.Pjfc = expected frequency (Poisson).

* Data for the first eleven samples are taken from Schindler's experiments.
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Table II—Continued

Authors' own experi-

Sample 11

ment with known

k

X = 2

Nk

NPk

k

Nk

N.Pk

0

0

0.09

0

56

67.67

1

0

0.66

1

156

135.34

2

1

2.49

2

132

135.34

3

4

6.22

3

92

90.22

4

9

11.67

4

37

45.11

5

16

17.50

5

22

18.04

6

19

21.87

6

4

6.02

7

19

23.44

7

0

1.72

8

26

21.97

8

1

0.43

9

19

18.31

Over 8

0

0.12

10

15

13.73

11

14

9.36

12

5

" 5.85

13

6

3.38

14

3

1.81

15

3

0.90

Over 15

+1

+0.74

x2

9.81

8.92

Px>

0.548

0.179

not as satisfactory as in the preceding example. It seems to follow that

if samples of clover seed are drawn by the method employed by Schindler,

then conclusions concerning them drawn from the mathematical model

involving the Poisson Law will not necessarily be very accurate. But it is

possible that the method of drawing samples of seeds may be so adjusted

(this is the opinion of Przyborowski and Wilenski) that the number of

dodders in a small subsample of seeds could be considered rightly as a

random variable following the Poisson Law.

As mentioned above, if the outcomes of experiments or observations do

not conform with the predictions of a mathematical model that is strongly

suggested by intuition, then it is usual to ascribe the divergencies to "faults

of experimentation." This expression is vague, and if we try to make it

more precise, we shall probably come to the description: "The random

machinery of the observed phenomena does not correspond to the mathe-

matical model assumed." The situation can be remedied in two ways.

One is to make an effort towards a better understanding of the phenomena
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studied and therewith to modify the mathematical model. The other way

is to modify the method of experimentation so as to bring it into con-

formity with the original mathematical model. The possibility and desir-

ability of these two methods depend on the circumstances of the problem.

They are illustrated in the following two examples.

Example 3.—Problems of pest control led to studies of the distribution

of larvae in small plots. An experimental field planted with some crop

is divided into a number of small plots, very much as a Petri-plate in

Example 1 was divided into small squares. Then all the larvae found in

each plot are counted. Naturally, the number of larvae varies considerably

from one plot to another. The original mathematical model of the machin-

ery behind this variability, the one strongly suggested by intuition, was the

same as that used for the interpretation of the variability of the number

of colonies from one square on the Petri-plate to another. Therefore,

attempts were made to fit the observed distributions with a Poisson fre-

quency law. Counts of larvae and attempts to understand the machinery

of their distributions were made by many research workers. Table III,

Table III

Comparison of the distribution of beet web worms with the Poisson and Type A

contagious distributions

[G. Beall, Ecology, Vol. 21, 1940, p. 462]

Class

Treatment 1 (untreated)

Treatment 2

Treatment 3

Obs.

Poisson

Type A

Obs.

Poisson

Type A

Obs.

Poisson

Type A

exp.

exp.

exp.

exp.

exp.

exp.

0

117

80.1

116.7

205

196.2

203.8

162

138.6

157.6

1

87

112.2

84.3

84

99.0

87.8

88

118.1

96.0

2

50

78.5

58.3

30

25.0

25.9

45

50.3

45.4

3

38

36.7

33.6

4

4.2

6.1

23

' 14.3

17.6

4

21

12.8

17.4

2

0.5

1.2

5

3.0

6.0

5

7

" 3.6

" 8.3

2

0.5

6

2

0.8

3.7

+0.1

+0.2

7

2

0.2

1.6

+0.2

+2.4

8

0

9

1

.+0.1

+1.1

mi

2.114

3.204

2.537

mi

0.662

0.157

0.336

x2

46.8

3.1

4.0

1.1

20.2

2.7

*V

0.000

0.543

0.135

0.282

0.000

0.269
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Table III—Continued

Comparison of the distribution of diplopods with the Poisson and Type A contagious distributions

[L. C. Cole, Ecological Monographs, Vol. 16, 1946, p. 71]

Number

Poisson

exp.

Type A

exp.

per

Obs.

board

0

128

100.5

133.6

1

71

95.5

61.0

2

34

45.4

35.6

3

11

14.4

17.2

4

8

3.4

7.5

5

5

0.7

3.1

Over 5

3

0.1

2.0

mi

1.307

mi

0.712

xi

20.5

4.1

*V

0.000

0.249

taken from data in papers by Geoffrey Beall,2 Lamont C. Cole3 and S. B.

Fracker and H. A. Brischle,4 gives a few observed distributions and their

comparison with theoretical distributions.

In all cases, the first theoretical distribution tried was that of Poisson.

It will be seen that the general character of the observed distribution is

entirely different from that of Poisson. There seems to be no doubt but

that a very serious divergence exists between the actual phenomenon of

distribution of larvae and the machinery assumed in the mathematical

model. When this circumstance was brought to my attention by Dr. Beall,

we set out to discover the reasons for the divergence.

From the discussion of Example 1 you will perceive that, if we attempt

to treat the distribution of larvae from the point of view of Poisson, we

would have to assume that each larva is placed on the field independently

of the others. This basic assumption was flatly contradicted by the life

of larvae as described by Dr. Beall. Larvae develop from eggs laid by

2 Geoffrey Beall: "The fit and significance of contagious distributions when applied to

observations on larval insects." Ecology, Vol. 21 (1940), pp. 460-474.

3 Lamont C. Cole: "A study of cryptozoa of an Illinois woodland." Ecological Mono-

graphs, Vol. 16 (1946), pp. 49-86.

4 S. B. Fracker and H. A. Brischle: "Measuring the local distribution of Ribes."

Ecology, Vol. 25 (1944), pp. 283-303.
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Table III—Continued

Comparison of distribution of ribes with the Poisson and Type A contagious distributions

[S. B. Fracker and H. A. Brischle, Ecology, Vol. 25, 1944, p. 291]

Number

per 0.1

Poisson

Type A *

Obs.

acre

exp.

exp.

strip

0

42

18.9

42.3

1

11

23.0

15.6

2

4

14.0

10.8

3

1

5.7

5.9

4

3

1.7

3.0

5

1

0.4

1.4

6

0

0.1

Over 6

2

.+0.2

+1.0

mi

1.000

Wl2

1.013

x2

41.7

1.92

fV

0.000

0.392

* In the original publication the fit given was worse, due to maladjustment of parameters

mi and m^.

moths. It is plausible to assume that, when a moth feels like laying eggs,

it does not make any special choice between sections of a field planted with

the same crop and reasonably uniform in other respects. Therefore, as far

as the spots where a number of moths lay their eggs is concerned, it is

plausible that the distribution of spots follows a Poisson Law of frequency,

depending on just one parameter, say m, representing the average number

of spots per unit area.

However, it appears that the moths do not lay eggs one at a time. In

fact, at each "sitting" a moth lays a whole batch of eggs and the number

of eggs varies from one cluster to another. Moreover, by the time the counts

are made the number of larvae is subject to another source of variation,

due to mortality.

After hatching in a particular spot, the larvae begin to look for food and

crawl around. Since the speed of their movements is only moderate, it is

obvious that for a larva to be found within a plot, the birthplace of this

larva must be fairly close to this plot. If one larva is found, then it is

likely that the plot will contain more than one from the same cluster.
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Considerations of this kind were used to build up a mathematical model

of the distribution of larvae which led to the following results. Let

C(k) denote the probability that a plot will contain exactly k larvae, for

k = 0, 1, 2, •••. The probability C(0) that there will be no larvae in

the plot considered is computed from the formula

C(0) = e-»"(i-«-mj). (7)

If C(0), C(l), • • •, C(k) are computed, then C(k + 1) is given by the recur-

rence formula

C(fc + 1)= ' Z — g(fc-<). (8)

A; + 1 t-o t\

In particular,

C(l) = e-mi(1-e""2) — mie-m>, (9)

C(2) = e-miii-e~mi) — (mi2e-2m' + mie-m*), (10)

etc.

It may be regretted that the formulae are somewhat complicated. How-

ever, since the machinery behind the distribution of larvae is rather com-

plex, one has to put up with the resulting inconvenience.

Because, as we have observed, a plot that contains one larva frequently

contains more than one, the distribution deduced was called "contagious."

Several distributions of a similar kind were deduced and, to make a dis-

tinction, the one given by the above formulae was called contagious of

type A with two parameters.5

A distribution of type A depends on two parameters, mx and m2, which

are connected with three quantities having a physical meaning as follows.

Assume that the area of the plot on which the larvae are counted is equal

to unity. Further, let m be the average number of batches of eggs per unit

of area, and let A. be the average number of survivors per batch of eggs at

the time when the counts are made. Finally, let us introduce an area A

which we shall call "area of accessibility." Imagine a plot P of unit area

on which counts of larvae are to be made and let S denote a spot on which

a batch of eggs was laid. If S is far from P, then no larva hatched at S

can be found in P. The area A, by definition, contains all points S such

that larvae born at S can reach the plot P before the counts are made.

6 The term "contagious distribution" was borrowed from G. Polya, who was the first

to consider this type of problem. See G. Polya: "Sur quelques points de la theorie des

probabilites." Annates de I'Institut Henri Poincare, Vol. 1 (1931), pp. 117-162.

See also W. Feller: "On a general class of 'contagious' distributions." Annals of Math.

Stat., Vol. 14 (1943), pp. 389-400.
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Obviously, the more mobile the larvae are, the larger the area A and

conversely. Consequently, if one counts very young larvae, then A is

small, close to unity. For larger larvae, the area A is larger. It follows

that a reasonable agreement between theory and observation may be

expected only if counts include larvae of more or less the same age.

The parameters mi and m2 are connected with m, A, and A by the fol-

lowing formulae:

X

mi = Am, m2 = — (11)

A

The mean number of larvae per plot is

/ii' = km = mxm2, (12)

the variance is

H2 = Xmf 1 -\—J = miw2(l + m2). (13)

It is seen that if the mean m' is kept constant while the area of accessibility

A is indefinitely increased, then the contagious distribution approaches the

Poisson Law. Details concerning the distribution can be found in the

original publication.6 Table III gives the comparison between the observed

distribution of larvae and the one expected on the basis of contagious dis-

tribution of type A with two parameters. It is seen that in all cases the

agreement is satisfactory. The data presented do not exhaust the instances

where contagious distributions of type A fit actual counts of insects. In

fact, it seems already safe to say that satisfactory agreement between this

particular mathematical model and observation is a more or less general

rule with the restriction that the life of the insects concerned does not

depart too widely from the general scheme described above. On the other

hand, there are organisms (e.g., scales) whose distribution on units of area

of their habitat does not conform with type A. An investigation revealed

that the processes governing the distribution of these organisms were much

more complex than that described and therefore, if a statistical treatment

is desired, a fresh effort to construct an appropriate mathematical model is

necessary.

In this example, in order to have agreement between the observed and

predicted frequencies, it was imperative to adjust the mathematical model.

This is generally the case when the phenomena studied develop by them-

selves and do not admit of any sort of human control. In the next example

we consider an instance of another kind where the experimental technique

may be so changed as to fit a desirable mathematical model.

6 J. Neyman: "On a new class of 'contagious' distributions, applicable in entomology

and bacteriology." Annals of Math. Stat., Vol. 10 (1939), pp. 35-57.
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Example 4.—This example deals with a category of industrial problems.

Problems of this kind are treated by Walter A. Shewhart7 and the reader

will find them of considerable interest.

Many laboratories are engaged in what is called routine analysis. Small

quantities of certain materials are sent to the laboratory for determining

the content of a certain ingredient X. The sample is subdivided into a

few portions, three, four or sometimes five, and these are analyzed sepa-

rately. Denote the particular results by xi, x2, x3 and x4 respectively and

by (i the "true" content of the ingredient X so that the xt denote the meas-

urements of p.

Because of experimental errors the measurements x< differ from ^ and

differ among themselves. Frequently there is evidence that the measure-

ments could be regarded as random variables following a normal law of

frequency,

V(x) = —7= e-<«-*),/2*\ (14)

so that this formula forms the mathematical model of the experiments of

first order. The model may be used to estimate the value of n knowing

only the values of four measurements xi, x2, x3 and x4. But we can proceed

differently. Denote by /1 and f2 some two functions of the xt. If the xt

are random variables, then /1 and /2 will also be random variables and we

may consider probabilities of their satisfying any given inequalities. We

may also look for some particular forms of the functions /1 and /2 such

that the probability of their satisfying a given inequality shall be equal

to any given number between zero and unity. Starting from this point of

view it has been found that the functions 8

tas

fi = x y=

Vn

and (15)

J2 = x + -j=

V»

have a remarkable property. Here x is the arithmetic mean of the measure-

ments xi, n their number, s their estimated standard deviation,9 and ta the

7 Walter A. Shewhart: The Economic Control of Quality of Manufactured Product.

Van Nostrand, New York, 1931, 501 pp.

8 J. Neyman, "Outline of a theory of statistical estimation based on the classical

theory of probability." Phil. Trans. Royal Soc, A236 (1937), pp. 333-380. See also the

conferences on estimation and confidence intervals.

(xt - x)2

9 That is, s is an estimate of a; s = 2 — •

(n - 1)
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value of Fisher's t corresponding to the number of degrees of freedom on

which s is based, and to P = 1 - a = , e.g., .01. If the measurements x,.

are independent random variables following the normal law (14), then what-

ever be the values of n and a., the probability of /i falling short of n and of f2

exceeding m is exactly equal to a = .99.

This circumstance permits the estimation of fi in the form of a random

experiment. We perform the experimental analysis, obtaining the values of

the xi, and then state that

"*,

tas tas

i--^gi + T' (16)

Vn vn

We may be wrong in this statement, but if the x,• do follow law (14), the

probability of our being correct is equal to a = .99. In other words, in 99

percent of such experiments, our statement concerning n will be correct.

The arbitrarily chosen number a is called the confidence coefficient and the

interval between fi and f2 the confidence interval. If the number of measure-

ments is small, something like n = 4, then the value of ta is considerable, and

the accuracy of estimating n as measured by the length of the confidence

interval

2tas

/2-/i=— (17)

n

is not satisfactory.

In what preceded, the value of a in Equation (14) was considered unknown.

If, however, a is known, then the confidence interval will be written as

x 7=^,i^£ + -7=, (18)

Vn Vn

where Ta is the value of ta corresponding to an infinite number of degrees of

freedom in the estimate of a. What this means in practice may be judged

from the following comparison. If a = .99, then Ta = 2.576, no matter what

n is. At the same time the values of ta are, respectively,

(19)

etc.

It follows that, whenever it is known not only that the analyses made

in some particular laboratory provide numbers x that for practical pur-

poses could be considered as particular values of a random variable fol-

lowing the normal probability law (14), but also that the standard deviation

i.oi = 63.657

if n = 2,

t.oi = 9.925

if n = 3,

t.oi = 5.841

if n = 4,
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40 MATHEMATICAL STATISTICS AND PROBABILITY

<r has permanently some particular numerical value, then the same few

parallel analyses could be used to provide an equally reliable but a much

more accurate statement concerning the value of /*. Therefore, if a labora-

tory is permanently engaged in performing analyses of some particular

kind, obviously it must be interested (i) in keeping the value of a constant

over long periods of time; (ii) in estimating this value of a as accurately

as possible; and (iii) in keeping watch over possible changes in a.

In order to keep a constant, say throughout a year, it is necessary to

eliminate all factors that may influence the accuracy of the analyses. This

is frequently done; but before trying to estimate the value of a presumed

to be constant, and before applying formula (18) instead of (16) we must

see whether or not the measurements that are being obtained do agree

with the mathematical model involving a constant a. Otherwise, repeated

application of formula (18) may give a much greater percentage of errors

than that expected.

This circumstance was realized by J. Przyborowski, who published the

following table illustrating his efforts to stabilize the accuracy of his

analyses of oats. In Table IV, s42 is the estimated variance of four parallel

analyses, and s02 is the arithmetic mean of a number of such variances

calculated for a long period of time, such as a year or more. If the value

of <r2 were actually constant during such a period, then the value of s02

would be a very accurate estimate and the mathematical model adopted

would imply a known distribution of the ratio v = Si2/s02.

The comparison of the expected and observed frequencies of the values

of v are given in the table for various periods. And here we see the curious

results of efforts to stabilize the accuracy of analyses. Year 1925 is very

bad; 1927 and 1928 show slight improvement, but are still bad. 1929 and

1930 are excellent; but this probably caused a false sense of security of

the personnel, and the next year 1931 is again bad. However, the three

year period 1929-1931 seems to be satisfactory. We may reasonably hope

that the experience of 1931 has stimulated the staff of Professor Przyborow-

ski's laboratory and that confidence intervals based on formula (18), where

the value of a is estimated from a great number of previous experiments,

do give correct statements concerning /* in nearly the expected percentage

of cases, 100a.

4. Summary. Now let us sum up the main points that I have tried to

emphasize. In speaking about probability, it is necessary to distinguish10

three different but related aspects of the problem:

(1) a mathematical theory, for example, the one described in my first

lecture;

10 Compare with H. Levy and L. Roth, Elements of Probability. Clarendon Press,

Oxford, 1936, p. 15.
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(2) the frequency of actual occurrences;

(3) the psychological expectation of the participant.

The mathematical theory need not be the one I described but, if it is

mathematically accurate, it will have nothing to do with the outside world

and, therefore, with either (2) or (3). This is for the good reason that

an accurate mathematical theory implies accurate definitions and axioms

and that in the outside world there are no objects that satisfy them except

within limits "good enough for practical purposes."

The theory of probability may be constructed to provide models corre-

sponding in some sense to certain phenomena of the outside world. And

here we may distinguish a divergence: (?) Some authors try to provide

mathematical models of what I called random experiments, the aspect

falling under (2) above. The theory presented in my first lecture is one

of the types which comes under this heading. The theory of Richard von

Mises is another, (ii) In building a mathematical theory of probability

we may aim at a model of the changes in the state of the human mind

concerning certain statements that occur as a result of changing the amount

of known facts. This view is exemplified by the theory built by Harold

Jeffreys.11 It will be noticed that the theory of probability of my first

lecture has nothing to do with a "state of mind," although, if we find that

the probability of a certain property is equal to 0.0001, for example, the

state of our mind will undoubtedly be influenced by this finding.

As I have mentioned, any theory may be correct if the authors are suffi-

ciently accurate in their deductions. However, it is my strong opinion that

no mathematical theory refers exactly to happenings in the outside world

and that any application requires a solid bridge over an abyss. The con-

struction of such a bridge consists first, in explaining in what sense the

mathematical model provided by the theory is expected to "correspond" to

certain actual happenings and second, in checking empirically whether or

not the correspondence is satisfactory.

The examples which I have given and many others which could easily

be quoted indicate that, by taking care both in the constructing of a mathe-

matical model and in the carrying out of the experiments, the bridge between

the theory of probability sketched in this chapter and certain fields of

application may be very solid.

11 See Jeffreys' Scientific Inference, University Press, Cambridge (Eng.), 1931, 247 pp.

Also numerous papers in the Proceedings of the Royal Society (Series A) and in the

Proceedings of the Cambridge Philosophical Society.
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Part 3. Tests of Statistical Hypotheses

1. The traditional procedure in testing statistical hypotheses. The

present lecture should not be considered as a direct continuation of the

preceding ones which were systematically connected. However, the con-

cepts discussed in my first two lectures will be used freely and combined

with a few new ones. Since it would be impossible to give all the necessary

definitions here, I must assume them to be known.

The traditional procedure in testing statistical hypotheses is widely

known but, as it is traditional, opinions concerning its exact nature vary.

I shall describe here a version that seems to summarize the common phases

in the history of several well known tests, such as the chi-test for goodness

of fit, Student's z test and others.

If we had to test any specified (in the early stages, very vaguely speci-

fied) statistical hypothesis H concerning the random variables,

we used to choose some function T of the x'a which, for certain reasons,

seemed to be suitable as a test criterion. Pearson's chi-square and Stu-

dent's z are instances of such criteria. The next step, and sometimes a

difficult one, consisted in deducing the exact probability law p(T | H) or

an approximate one, at least, which the chosen criterion T would follow

if the hypothesis H were true. The graphs of the probability laws con-

sidered usually represented curves with a single maximum at a certain

point of the range, decreasing towards the ends. This suggested a classi-

fication of possible samples into two not very distinctly divided categories,

"probable" and "improbable" samples. If a sample E led to a value of

the criterion T for which the value of p(T \ H) was small compared with

its maximum, then the sample E would be called improbable, or the

hypothesis H improbable, and conversely. You will certainly remember

instances where both very small and very large values of chi-square are

supposed to suggest that something is wrong.

When an "improbable sample" was obtained, the usual way of reasoning

was this: "Were the hypothesis H true, then the probability of getting a

value of T as or more improbable than that actually observed would be

(e.g.) P = 0.00001. It follows that if the hypothesis H be true, what we

actually observed would be a miracle. We don't believe in miracles nowa-

days and therefore we do not believe in H being true."

The above procedure, or something like it, has been applied since the

invention of the first systematically applied test, the Pearson chi-square of
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44 MATHEMATICAL STATISTICS AND PROBABILITY

1900, and has worked, on the whole, satisfactorily.1 However, now that

we have become sophisticated we desire to have a theory of tests. Above

all, we want to know why we should use this or that particular function T

of the x's as a criterion. Why should we test the goodness of fit by

calculating

(w - m')2

x2 = 2- - (1)

m

and not, say

(m - m')2

X,2 = 2- t1- (2)

m

or

I m - m' I

x»2 = 2! " (3)

m

or something else? What is the actual meaning of a statistical test? What

is the principle of choosing between several tests suggested for the same

hypothesis? It is the purpose of the present lecture to discuss some of

these questions and to explain certain basic ideas underlying the contribu-

tions to the theory of testing statistical hypotheses for which Professor E. S.

Pearson and myself are responsible.

The first question I shall discuss is this: when selecting a criterion to

test a particular hypothesis H, should we consider only the hypothesis H,

or something more? It is known that some statisticians are of the opinion

that good tests can be devised by taking into consideration only the

hypothesis tested. But my opinion is that this is impossible and that, if

satisfactory tests are actually devised without explicit consideration of any-

thing beyond the hypothesis tested, it is because the respective authors sub-

consciously take into consideration certain relevant circumstances, namely,

the alternative hypotheses that may be true if the hypothesis tested is

wrong. However, it is rather difficult to discuss what an author may have

in his mind subconsciously, or even consciously. The easier thing is to

consider the situations which may present themselves when we are forced

1 Since the publication of Lectures and Conferences in 1938, I have found that the

first exact test of a statistical hypothesis was devised much earlier. In fact, this honor

seems to belong to Laplace. In his paper, "Memoire sur l'inclinaison moyenne des

orbites des cometes," Memoires de I'Academie royale des Sciences de Paris, Vol. VII,

1773 (see also Oevres completes de Laplace, t. 8, Paris, 1891, pp. 279-321), Laplace

deduced a test based on the exact distribution of the mean of a sample drawn from a

"rectangular" distribution. Most readers of this book will be familiar with the fact that,

when the sample size n is not too small, this distribution is very close to normal.

Laplace gives the exact formula for the distribution and illustrates it on diagrams cor-

responding to several values of n. Curiously, while his formulae are correct, the diagrams

are wrong and bear no resemblance to the normal law!
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TESTS OF STATISTICAL HYPOTHESES 45

to select a test for a particular hypothesis H with nothing to base our device

on except the hypothesis itself.

Suppose then that we have to test some hypothesis H, and that two dif-

ferent criteria T1 and T2 are suggested. Which of them should we use?

What circumstances, referring to H and to nothing else, should influence

our choice? I cannot think of all the suggestions that have been made,

but I do remember seeing opinions that the criterion with the smaller

standard deviation would be preferable.

Let us generalize this suggestion and consider more closely the tentative

principle that the choice between possible criteria should be made on

properties of their distributions as determined by H. This principle, call it

Principle I, would obviously cover the question of the relative size of the

standard deviations.

With regard to Principle I, I shall show that it is not sufficient for the

choice. In fact, I shall prove that there may be two criteria having the

following properties:

(i) Both have identical frequency distributions; and therefore, on the

basis of Principle I alone, it will be impossible to choose between them.

(ii) Whenever one of these criteria has the most "improbable" values,

thus "disproving" the hypothesis tested, the values of the other are just

the most "probable" ones. This last circumstance will make it necessary

to choose one of the criteria.

With the above situation in view, I shall mention another principle, to

be called Principle II, which has been suggested by certain eminent workers

in theoretical statistics: whenever you have two (or more) criteria, choose

the one which, on the sample obtained, is less favorable to the hypothesis

you test.

This principle implies, of course, that criteria could, and should, be

chosen after the sample is drawn and analyzed.

I shall show that, if this principle is adopted, then it is useless to make

any calculations with a view to testing hypotheses: given a certain amount

of mathematical skill we shall be able to "disprove" any hypothesis on

any sample.

The above two principles do not exhaust all the possibilities. There may

be other principles that do not go beyond consideration of the hypothesis

tested. For example, we may require of the functions T used as criteria

some particular properties, e.g., that they should be symmetrical with

respect to the random variables, etc. However, I cannot think of any such

limitation that would seem reasonable. Therefore, without claiming that

the two propositions which I am going to prove provide decisive evidence

that it is absolutely impossible to make a rational choice of criteria without

explicitly or tacitly considering hypotheses alternative to the one that is
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46 MATHEMATICAL STATISTICS AND PROBABILITY

being tested, I am inclined to think that this conclusion is highly probable.

Anyhow, the two propositions do cover a certain range of possibilities and

clear away certain popular misconceptions. They show, for instance, that

an argument like "use Ti rather than T2 because its standard error is

smaller" is not convincing. Let us now enter into details.

2. Insufficiency of Principle I. Consider a system of n random vari-

ables, xi, x2, ' • *, xn, known to be independent and following the normal law

° - (^y'

-S(K-M)V2<r!

"*"•>-&£)• ™" ' (4)

where a > 0 and n are unknown constants. Suppose it is desired to test the

hypothesis H that n = 0. This is known as Student's hypothesis. The

generally accepted criterion to test H is the one invented by Student, namely,

to calculate

x

z = - (5)

s

where

x = - Sx,., ns2 = 2(xi - x)2. (6)

n

The probability law of z, if the hypothesis H be true, is given by

pz(z) = C(l + 22)-"/2, (7)

where

1 = f (1 + z2)-n/2 dz = B[i(n - 1), |]. (8)

The hypothesis H is to be rejected whenever the value | «' | of | z \ calculated

for the sample is so large that

P{\z\^\z'\} =2f p(z)dz (9)

is considered "small."

To prove the insufficiency of the Principle I as explained above I shall

now define another criterion, depending on the quantity f, which will have

the following properties:

1. If H be true, then the probability law of f is identical with that of z, so

p(f) = C(l + f2)-"'2. (10)

2. The absolute value of the product | zf | cannot exceed unity, i.e.,

Urlsi. (ii)
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If the £ criterion were used to test H, then this hypothesis would be

rejected whenever | £ | is large. In fact the large values of | £ | are "improb-

able" whenever H is true. From (11) it follows that whenever | £ | is large

then | z | must be small and conversely. Thus, whenever one of the alterna-

tive criteria z and £ indicates that the hypothesis H should be rejected, the

other is bound to protest that there is no reason for such rejection. This

means that whenever one of the criteria has a large absolute value, we

are compelled to choose the one whose verdict we shall respect. Principle I

will not help us in the choice, because the probability laws of z and £ are

identical. This completes the proof of the insufficiency of Principle I.

In order to define £ let us assume that the xi are numbered in the order

in which they are given by observation. Let

and

ns'2 = £ xi2

1

Xi - x2

X' = 7=-

nx'2 = i(xi + x2)2 + Z *i2.

3

(12)

(13)

The functions x' and s' thus defined will be called the quasi mean and the

quasi standard deviation of the x,.. Now I shall prove Proposition a, namely

that the ratio

x.

f-3

(14)

has the properties 1 and 2 described above.

In order to prove 1, it is sufficient to show that the simultaneous probability

law of x' and s' is identical with that of the ordinary mean x and standard

deviation s.

If the hypothesis H be true, then n = 0 and

**• ••*.> -G^)"'-*"".

Let us introduce a new system of random variables, j/i, y2,

nected with the x, by the following formulas,

(15)

Vn, con-

- -"i yjl + V* VV

*2

xi = yi for i = 3, 4,

n.J

(16)
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48 MATHEMATICAL STATISTICS AND PROBABILITY

It will be noticed that

xi - x2

Vi = 7==- = x

V2n

(17)

and is therefore identical with the quasi mean defined in equation (12). We

shall return to this notation after a while. Furthermore,

xi + x2

and having regard to (13) we shall have

s'2 = -(y22 + ys2+...+yn2).

(18)

(19)

The probability law of the j/,. will be deduced from equation (15) following

the steps indicated in my first lecture, namely,

Py(Vi, 2/2, • • •, Vn) = Px(xu x2, .••, xn)\ A | (Eq. 25, page 21) (20)

where | A | is the Jacobian defined by equation (24) of page 21, and the x,.

on the right-hand side should be expressed in terms of the y,.. Easy calcula-

tions give

Prdfi, »,..•, Vn) - P(x', y2, . .., yn) = —-£=- e-^+i-)/*^, (2l)

(<rV2jr)n

where s'2 stands for the sum of squares (19). Our next step consists in intro-

ducing still another system of variables, ui, u2, • • •, un, one of which will be

identical with x' and another with s'. We put

j/i = x' = Ml,

2/2 = V nu2 cos un cos un_i

2/3 = V 71M2 COS un COS Un_i

2/4 = VOTj COS Mn COS Mn_i

COS W4 COS M3,

cos u4 sin w3,

sin m4)

Vn

= Vn'

nw2 sin Mn.

(22)

The range of variation of the new variables is determined by the following

inequalities
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(23)

- oo < Ui < +oo,

0 < M2,

0 ^ u3 < 2t,

-%t < ui < +5T, i = 4, 5, . • ., n,J

wherefore outside these limits the probability law of the u, is identically equal

to zero.

It will be easily seen that

u22 = -(y22 + y32+••.+yn2)

n

(24)

and later on we shall drop the notation ui and m2, substituting for them x'

and s' respectively. Easy calculations give for the Jacobian

Ht'.Va, .••,yn)

d(uuu2, •••,«n)

and it follows that

= (Vn)n-1U2B-2cosm4cos2ubcos3u6 • • • cos" 3u„ (25)

/ Vn \n

PU(uu u2 • . ., Mn) = t r--\ u2n

-2e-n(M',+ul,)/2',cosM4Cos2«3

cos" 3Un

(26)

In order to obtain the simultaneous probability law of Mi and u2 or, what

comes to the same thing, of x' and s', we must integrate (26) for u3, u4, • • •, un

from -oo to +oo. Since the integrand differs from zero only within the limits

shown in (23), and since these limits for U3, u4, • • .,un do not depend on the

values of ui and u2, we have at once that

p(uiu2) = Cl (^|)n"2n-2e-n("l,+uJ,)/2'^

(27)

wherein

Ci = I • . • I cos w4 cos2 M5 • • • cos" 3 un du3 du4 du5 . • . dun (28)

and the region of integration, w, is determined by

0 g u3 < 2t,

- 4* < Mi < +Jtt

for t

, 5, •••,n.J

(29)

Remembering that Mi and u2 are identical with x' and s' respectively, we

have then

p(x', «') = C1s'n-2e-nC^',+•")/2',. (30)
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50 MATHEMATICAL STATISTICS AND PROBABILITY

We see that the quasi mean and the quasi standard deviation as defined by

(12) and (13) do follow a probability law identical with that of the ordinary

mean x and standard deviation s of the x,.. In order to obtain the probability

law of the ratio f we must now perform on equation (30) exactly the same

operations that lead to the probability law of Student's z; and it is obvious

that the probability law of f will be found to be identical with that of z. This

proves the first part of the proposition.

Let us now prove part 2, namely, that | zf | ^ 1. For this purpose notice

that, whatever be the real numbers a and b, we shall have

(a ± b)2 = a2 ± 2ab + b2 £ 0 (31)

and therefore

2| ab | ^ a2 + b2. (32)

It follows that for any real numbers a and b,

(o ± b)2 g 2(a2 + b2). (33)

If s is the ordinary standard deviation of the xi and x their mean, then

ns2 = Sfe - x)2 ^ (xi - x)2 + (x2 - x)2. (34)

On the other hand the definition of the quasi mean gives us

2nx'2 = (xi - x2)2 = [(*i -x)- (j2 - x)f (35)

and, from (33), we see that

2nx'2 ^ 2[(xx - xf + (a* - x)2]. (36)

Comparing (34) and (36) we find that

x'2 < s2, (37)

an inequality between the squares of the quasi mean and of the ordinary stand-

ard deviation. From the definition of the quasi standard deviation (13) it

follows that

Zxi2 = n(s'2 + x'2) = n(s2 + i2). (38)

Therefore

s'2 + x'2 = s2 + x2 (39)

and, owing to (37),

x2 Z s'2. (40)

Multiplying (37) and (40) and dividing the resulting inequality by the

product s2s'2, we get

which is equivalent to | zf | g 1, or equation (11) of page 46. This fulfills
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TESTS OF STATISTICAL HYPOTHESES 51

the proof of part 2 of Proposition a. Thus we have shown that Principle I

by itself is not sufficient for a choice between alternative criteria that may be

suggested for testing a given hypothesis.

3. Consequences of supplementing Principle I by Principle IT. We

shall now show that Principle I could not usefully be supplemented by

Principle II. The combination of the two principles would read as follows:

if there are several criteria for testing a given hypothesis H, all following

the same probability law as determined by H, then the choice among them

should be made after the sample is drawn and examined, and we should

choose the test that appears to be the least favorable to H. We have already

seen that if Student's hypothesis (page 46) be true, then Student's z is not

the only function of the xt following the familiar probability law (7). We

shall now show that, whatever be the sample E' observed in a particular

case, not all the xt being equal to zero, it is possible to find a criterion, say

£°, which for this particular sample possesses the value + oo and which,

in repeated sampling, follows exactly the same law as z and £ discussed

above. If we adopt both Principle I and Principle II, then we shall have

to test Student's hypothesis using £°; and this will lead to the rejection of

the hypothesis. Thus in all cases, with the sole exception that all observed

xi are equal to zero, Student's hypothesis will have to be rejected, which

shows that the combination of the two principles I and II is not a reason-

able solution of the difficulty.

I shall now call the attention of the reader to the distinction between

x/ and xi used below. The symbol xt will mean, as before, the random

variable following the law (15). On the other hand x{ will denote a value

of xi observed in some particular case.

Proposition b.—Whatever be the sample

Brmxi'.xa', •••,««' (42)

observed in a particular case, one at least of the x/ being different from zero,

it is possible to define a criterion f° which is represented by a function of the

xi and which has the following properties:

(i) The probability law of f°, as determined by H, is the same as that of

Student's z and that of f, equation (7), page 46.

(ii) The value f°(£") of f°, calculated for the sample E', is infinite.

It will be noticed that f° will have to be adjusted to the sample E' already

observed. Therefore the values (42) will have to enter into the expression

of f°. They are constant numbers and will play the role of coefficients. On

the other hand, f° will depend also on the random variables x,\

Proof of part (i) of Proposition b.—Since the order in which the x,• are num-

bered is of no consequence, we may assume that xi, x2', • • •, xm' are different
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52 MATHEMATICAL STATISTICS AND PROBABILITY

from zero, m ^ n. Before defining f° we shall need the numbers a1} a2, •• ",

an, which are connected with the x/ by the n equations

i = 1,2, •••,n. (43)

Obviously a,- ^ 0 for i = 1,2, • • •,m, but a,- = 0 for i = m + 1, • • •, n; also

Z «,-2 = 1. (44)

Further steps consist first in defining a "pseudo mean" x" and a "pseudo

S.D." s" and then in making the identification

x"

Here the pseudo mean and pseudo S.D. are defined by

aixi + • • • + anxn

x" = j- — (46)

Vn

and

s"2 = - S xi2 - x"2. (47)

n

It will be noticed that if a,- = 1/Vn for i = 1, 2, • • •, n, then the pseudo

mean and pseudo S.D. become identical with the ordinary ones, x and s.

It will be sufficient to show the existence of a system of variables

v\, «2, • • •, vn,

whose elementary probability law as determined by H is

W{vu *,-••, O = (gJ^)n e-n^t+''w, (48)

wherein

»! = x" and ns"2 - («22 + . . . + »n2). (49)

To show that vi, • • •, vn exist and that they possess the probability law (48)

we introduce

ft = «*[(«i2 + • • • + «Vi)(«i2 + • • • + «*2)]_H

for A; = 2, 3, • . •, m and jS* - 0 for k > m. (50)
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Now, we relate v\, v2, •• •, vn to xi, x2 . • •, xn by the following system of

equations:

xi = Vna^i + 0C1P2v2 + ai(ftf3 + P*** H 1" ft»i>m),

x2 = Vna2vi fty2 + 012P3v3 + oiz(fiivi + fti>5 H 1- pmvm),

a2

2 1 2

/_ a.\ + a2

x3 = Vna3vi fty3 + a3ftr4 + a3(ftu5 H 1- Pmvm), l /cjn

a3 v" y

/- ai + «2 H h a i-i

xk = V na^i ftp* + a^ft+iVi+i

+ ctk(fik+2vk+2 -\ h 0mvm),

for A; = 2, 3, • • •, to. In interpreting these equations, it is important to

remark that, owing to the definition of in and ft, if m < n, then

ft»+i = ft+2 = • . . = ft = 0. (52)

If to = n, then equations (51) define the transformation completely. Other-

wise, if to < n, we put

x,- = vi for i = m-\- \, • • •, n. (53)

With some algebraic reduction and the fact that a2 + • —|- an2 = 1 (equation

44), it will be found that

1

Vn

and that

fa1+•••+*■,■) =Mi2+fe2+-+0

= nvi2 + ns"2. (55)

The Jacobian | A |

d(xi, x2, • • ., xn)

= vn, as is not difficult to work

d(vu v2, ••-, vn)

out from equations (51), (52), (53). From equation (55), and the value of

the Jacobian, it follows by applying equation (25) of page 21 that if equation

(15) is the simultaneous elementary probability law of x\, x2, • • •, xn, then

that of v\, i>2, • • •, vn must be as written in equation (48).

Since equation (48) is of the same form as equation (21), and since formula

(45) is similar to (14), it is clear that the steps required to deduce p(f°) from

(48) would be identical with those already shown in the deduction of p(f)
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54 MATHEMATICAL STATISTICS AND PROBABILITY

from (21). This completes the proof that the criterion of f° has the property

(i).

Proof of part (ii) of Proposition b.—We must now prove the other statement

(ii) on page 51 concerning f°; namely, we must prove that if in the expression

for f° we substitute, instead of the random variables x,-, the particular observed

values x/ of (42) in terms of which the function f° has been defined, then the

value t°(Er) of f° will be found infinite. Replacing x,- by x/ in equation (46),

and remembering that the coefficients a,- therein have already been defined by

equation (43) in terms of the x/, we easily find that the value of the pseudo

mean calculated for the sample E' is

x1'2 + x2'2+---+xn'2

x"(E') = —— > 0 (56)

n

because at least one of the numbers x/ is different from zero. Further, sub-

stituting xi for xi in equation (47) to calculate the pseudo S.D. s"(E'), we

find it to be zero. It follows from equation (45) that

x"(E')

?(E') = — = oo (57)

s"(E')

and this completes the proof of part (ii) of Proposition b.

For the one particular sample E' already drawn, f° has the value oo, but

in repeated sampling it follows the" same law as z and £.

It may be useful here to make the following remark. No number of

examples is able to provide a proof of a general statement. On the other

hand, the failure of a single example is sufficient to disprove any general

statement. Our purpose here was to show that the principles I and II

could not generally be applied for making a choice among criteria for

testing hypotheses, and the validity of the proof does not suffer from the

fact that we have limited ourselves to the consideration of one particular

example.

As a matter of fact, it is easily seen how the above reasoning could be

generalized, but such generalization would not produce any new relevant

result.

4. General basis of the theory of testing statistical hypotheses. I

shall finish this lecture by indicating what appears to be the general basis

of the theory of testing statistical hypotheses. We must start by consider-

ing the situation in its most general form.

(i) When we desire to test a particular statistical hypothesis H0, we

imply that it may be wrong.0 E.g., if we try to test Student's hypothesis

that /t = 0, we admit the possibility that it may be wrong and that, there-

fore, /* may have some value other than zero. It will be seen that when-
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ever we attempt to test a hypothesis we do admit, although perhaps sub-

consciously, that there are hypotheses that are contradictory or, in our

terminology, alternative, to the one tested. There is no reason why these

alternative hypotheses should not be considered explicitly when choosing

an appropriate test.

(ii) Whenever we attempt to test a hypothesis we naturally try to avoid

errors in judging it. This seems to indicate the right way of proceeding:

when choosing a test we should try to minimize the frequency of errors that

may be committed in applying this test.

Having in mind the above two points (i) and (ii) we may proceed further

and discuss the kinds of errors we may commit in testing any given

hypothesis H0. It is easy to see that there are two kinds:

After having applied a test we may decide to reject the hypothesis H0,

when in fact, though we do not know it, it is actually true. This is

called an error of the first kind.

After having applied a test we may decide not to reject the hypothesis

H0 (this may be described in short by saying that we "accept H0")

when in fact H0 is wrong, and therefore some alternative hypothesis

H' is true. This is called an error of the second kind.

The test adopted should control both kinds of errors. Now let us see

what essentially is the machinery of any test, whatever be the principle on

which it was chosen.

A test is nothing but a rule by which we sometimes reject the hypothesis

tested and sometimes accept it (in the sense explained above), according

to whether or not the observations available possess some properties speci-

fied by the rule. The observations are some n numbers, x\, x2, • • ., xn the

system of which could be represented by a point E in the n-dimensioned

space W, having the xi for the n coordinates. The point E and the space

W are called the sample point and the sample space. Any rule specifying

cases where we should reject the hypothesis tested is equivalent to a speci-

fication of the positions of E within W which, if arrived at by observation,

lead to a rejection of H. These positions usually fill up a certain region,

w, which is called the critical region or the region of rejection.

In conclusion we see that to choose a test for a statistical hypothesis

H0 we must choose a critical region w in the sample space W and make

a rule of rejecting H0 whenever E, as determined by observation, falls

within w.

Let us illustrate this by an example. Consider the case where a sampled

population is divided into n categories and we test the hypothesis that the

probability of an individual falling within the ith category has some

specified value Pi for i = 1, 2, • • •, n. Denote by M the total number of
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observations and by m< the number of observations belonging to the tth

category.

The generally accepted test of this hypothesis consists in rejecting it

whenever

(mi - Mpi)2

X2 - Z ' (58)

Mpi

is "too large." What "too large" means is a subjective question, but there

must be a more or less definite limit between values of chi-square that are

"too large" and others that are not. Let xs2 denote this limit; and consider

a space of n - 1 dimensions, the coordinates of any point being mi, m2, •••,

mn-i. As none of the ?ra,. can be negative and their sum cannot exceed M,

the sample space W will be composed of points E with all coordinates mi,

^2, • • • , mn-i being non-negative integers and satisfying the inequality

mi + m2-\ 1- mn_i g M. (59)

It is easily seen that the rule of rejecting H0 whenever x2 > Xs2 is equivalent

to considering the region w lying within W and outside the ellipsoid

^i^. - «.« (60)

as the critical region.

It is equally easy to see that any other test has a similar feature. For

example, Student's test is equivalent to a rule of rejecting Student's hypothesis

whenever the sample point falls within a circular hypercone with the axis

xi = x2 = • • • = x». (61)

Having disposed of this we may go on to discuss the probabilities of errors.

First of all: is it legitimate to discuss the probabilities of errors in testing

statistical hypotheses? Isn't this equivalent to discussing the probabilities

of hypotheses themselves, which would be useless? E.g., it would be useless

to discuss the probability of Student's hypothesis because this would be the

same as the probability of p = 0. As /* is an unknown constant, the proba-

bility of fi being equal to zero must be either P{/* = 0} = 0 or P{p = 0} = 1

and, without obtaining precise information as to whether p is equal to zero

or not, it would be impossible to decide what is the value of F{/x = 0}.

To this criticism the answer is the following. Undoubtedly, n is an

unknown constant and, as far as we deal with the theory of probability as

described in my first two lectures, it is useless to consider P{n = 0}. On

the other hand our verdict concerning the hypothesis tested, H0, depends

on the position of the sample point E, that is to say, on its coordinates, and

these, according to our assumptions, are random variables. It follows that
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TESTS OF STATISTICAL HYPOTHESES 57

our verdict is random and that there is no inconsistency in considering the

probability of the verdict having this or that property, for example, of its

being erroneous.

Consider the sample point E and any region w in the sample space.

The probability of E falling within w may depend on the hypothesis that

happens to be true. For example, if formula (4) represents the probability

law of the xt, and /* = 0, then the probability of E falling within some

particular region w may be 1/2. On the other hand if /* = 10, say, the

same probability may be equal to 0.0001. Therefore we shall agree to

denote by P{E iw \ H) the probability of E falling within w calculated on

the assumption that the hypothesis H is true.

Now consider a hypothesis H0 which we desire to test, and any region w

which we have chosen to serve as critical region. What are the circum-

stances in which we commit an error of the first kind? They are: (i) the

hypothesis tested is true; and (ii) the sample point E falls within the

critical region w, whereupon H0 is unjustly rejected. It follows that the

probability of an error of the first kind must be calculated on the assump-

tion that #o is true and, in fact, it is the probability

P{E(w\H0} (62)

of E falling within w.

Now let us turn to errors of the second kind. For an error of the second

kind to be committed it is necessary (and sufficient) that the hypothesis

tested H0 be wrong and that the sample point fail to fall within the critical

region selected. But if H0 is wrong, then some other admissible hypothesis

H' must be true. Therefore, the probability of an error of the second kind is

1 -P{Eew\H'}. (63)

Obviously, instead of considering the probability of committing an error

of the second kind, we may consider the probability of avoiding it, which

is denoted by /3(w | H'), so that

P(w\H') = P{Eew\H'}. (64)

fi(w | H') considered as a function of H' is described as the power (the

power of detecting the falsehood of the hypothesis tested) of the region w

with respect to the alternative hypothesis H'.

Any rational choice of a test must be made with regard to the properties

of the power (64). Indeed, the values of the power {S(w \ H) for a fixed

region w and for a changing hypothesis H (which in particular may be

H0, the one we desire to test) give no more and no less than a complete

description of the properties of the test based on the critical region w. In

fact, what could be called "the properties of a test?" To know the proper-
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58 MATHEMATICAL STATISTICS AND PROBABILITY

ties of a test can mean nothing but to know (i) how frequently this test

will reject the hypothesis H0 tested, when it is true; and (ii) how frequently

it will disprove H0 when H0 is wrong. That is exactly what the values

of the function B(w \ H) tell us. Without knowing the properties of

B (w | H), we cannot very well say that we know the properties of a test

based on w. And just these properties of the power seem to be the proper

rational basis for choosing a test.

For example, by considering the power of Student's test, it is possible to

show that this test has the following properties, which put it above any

other test that may be suggested.

1. The probability of rejecting the hypothesis H0 that p = 0 is always

greater when the hypothesis H0 is wrong than in cases when H0 is true.

This property is described by the adjective "unbiased" attached to the

test possessing the property.

2. Any other unbiased test, if it leads to the same frequency of errors of

the first kind, will less frequently detect the falsehood of the hypothesis

H0 when H0 is in fact wrong.

The responsibility for the above concepts and for the resulting theory

of testing statistical hypotheses is borne jointly by Egon S. Pearson and

the present writer. Our first paper2 on the subject was published in 1928,

over twenty years ago. However, it took another five years for the basic

idea of a rational theory to become clear in our minds.3 Thereafter, the

work became easier and within a short time we were joined by a number

of colleagues.4

Bare statements of principles are never clear unless the principles are

illustrated in full detail with examples. It would be most satisfactory if

the use of the concepts described above could be illustrated with examples

which are both easy and of practical importance. Unfortunately, it is very

difficult to satisfy both conditions at the same time. One must choose

between the illustrativeness of an example which involves a certain arti-

ficiality and the practical importance of a test which involves technical

difficulties in dealing with the problem. Faced with the necessity of choosing

between the two alternatives, the writer felt that the readers of this book

would be best served by a simple illustrative example, even though it is

somewhat artificial.

We will imagine an early stage in the study of a pair of genes, the domi-

2 J. Neyman and E. S. Pearson: "On the use and interpretation of certain test criteria

for purposes of statistical inference." Biometrika, Vol. 20-A (1928), pp. 175-240 and

264-299.

8 J. Neyman and E. S. Pearson: "On the problem of the most efficient tests of statis-

tical hypotheses." Phil. Trans. Roy. Soc, London, Vol. 231A (1933), pp. 289-337. Re-

cently, a systematic elementary presentation of the theory was given in the author's

First Course on Probability and Statistics already quoted.

*See: Statistical Research Memoirs, Vol. I (1936), Vol. II (1938).
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nant gene to be called G, the recessive g. We imagine that it is more or

less taken for granted that the mating of the organisms carrying these

genes is non-assortative (i.e., that the genetical composition of one mate is

independent of that of the other mate) and is of uniform fertility. Con-

trary to this general belief, a geneticist suspects that the recessive types

gg do not participate in the reproduction. This suspicion is not based on

any trials but on some analogies, and, in preparing for a meeting at which

the genes G and g are to be discussed, the geneticist is somewhat hesitant

whether or not to come out with his doubts. Before deciding, he wishes to

take into account the results of two independent experiments performed for

other purposes, but involving genes G and g. Both experiments had the

same pattern. In each case two hybrids Gg X Gg were crossed, giving a

generation of progeny which we shall denote by Fi. Next the Fi indi-

viduals were allowed to mate without interference, producing the second

generation F2. Finally the F2 individuals were allowed to mate without

interference and they produced the third generation F3. Since the two

experiments were carried out for purposes not connected with genes G and

g, the records of the experiments appear to be fragmentary as far as the

genes G and g are concerned. In fact, the only information concerning

these genes in the first experiment is that the F2 generation was composed

of ni = 8 individuals and that among them there were exactly xi recessives

gg. Further, the records of the second experiment show only that the F3

generation was composed of n2 = 10 individuals and that among them

there were exactly x2 recessives gg. The values of the four numbers nu xi

and n2, x2 must now be used by the geneticist to make up his mind whether

or not to voice doubts about the non-assortative character of mating. Every

human action is subject to error, and therefore the geneticist would not

mind being in error from time to time. However, he is inclined to lay down

rules for his behavior so as to control the frequency of errors. First, in

cases where some established hypotheses are true, he would like to voice

doubts of these hypotheses only rarely, say with a frequency not exceeding

a selected number a, perhaps a = .1 or a = .05 or the like. Another require-

ment which the geneticist lays down for. his behavior is that, in cases where

some hypothesis H2, alternative to the established hypothesis Hu is true,

then he wants his rule to lead him to protest as frequently as is humanly

possible.

Applying these two principles to the case of the genes G and g, the

geneticist notices that ni and n2 are sure numbers while xi and x2 are ran-

dom variables whose particular values are determined by the two experi-

ments. Let Hi and H2 denote the two hypotheses under consideration.

Namely, Hi asserts that, with respect to genes G and g, the mating is non-

assortative with uniform fertility and H2 asserts that the non-assortative-

ness and uniform fertility apply only to dominant and hybrid types GG
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and Gg, but that the recessives gg do not participate in the reproduction.

We will assume for simplicity that the geneticist admits the possibility of

only these two hypotheses Hx and H2.

On either hypothesis, the random variables xi and x2 are capable of

assuming all the 99 different combinations of integer values xi = fci and

x2 = k2, with fci = 0, 1, 2, • • •, 8 and k2 = 0, 1, 2, • • •, 10. Thus the

sample space W is composed of 99 points with coordinates (fci, k2). Easy

calculations give the probability that the sample point E = (*i, x2) will

assume the position (fci, fc2). Namely, on the hypothesis Hi we have, say,

p(fci, fc2 | Hi) = P{(zi = h)(x2 = fc2)}

On the hypothesis H2 we have

p(*i, h | H2) = P{(xi = h) (x2 = fc2) | H2}

= C klC ki(1)ki(s)ni~,Ci( 1 •)*«(i 5\n»-h

(65)

(66)

Tables I and II give the numerical values of these probabilities for all

combinations of fci = 0, 1, 2, • • •, 8 and fc2 = 0, 1, 2, • • •, 10 in so far as

these probabilities are not too small. Upon adding all the entries in

Table I the reader will obtain the total .998. Thus the probability is

approximately .002 that the sample point E will occupy any position in

Table I

Joint probability distribution of xi and xv, P{(xi = ki)(xt = h)] Hi), as determined by the

hypothesis Hi

ki

*i

0

1

2

3

4

5

6

7

0

.006

.015

.018

.012

.005

.001

.000

.000

1

.019

.050

.058

.039

.016

.004

.001

.000

2

.028

.075

.088

.058

.024

.006

.001

.000

3

.025

.067

.078

.052

.022

.006

.001

.000

4

.015

.039

.046

.030

.013

.003

.001

.000

5

.006

.016

.018

.012

.005

.001

.000

.000

6

.002

.004

.005

.003

.001

.000

.000

.000

7

.000

.001

.001

.001

.000

.000

.000

.000

8

.000

.000

• .000

.000

.000

.000

.000

.000
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Tabus II

Joint probability distribution of xi and xt, P{(xi — fci)(x2 = hi) \ Hi), as determined by Hi

h

fcl

0

1

2

3

4

5

0

.204

.204

.089

.022

.003

.000

1

.136

.136

.060

.015

.002

.000

2

.041

.041

.018

.004

.001

.000

3

.007

.007

.003

.001

.000

.000

4

.001

.001

.000

.000

.000

.000

5

.000

.000

.000

.000

.000

.000

the sample space for which the entry in Table I is zero or is not listed at

all. The same probability for Table II is equal to .004.

Consider now the problem of selecting the combinations of values of

xi and x2 such that, if any one of these combinations is determined by the

two experiments, then the geneticist would consider it advisable to reject

the hypothesis Hi. In the terminology of this lecture, the problem is

that of selecting the critical region Wo for testing the hypothesis Hi against

the set O of admissible hypotheses which, in this case, includes Hi and H2

only. The principles which the geneticist laid down for his choice are

exactly those determining the best critical region for testing Hi against O.

The first of these principles is that the region w0 be one of those regions w

for which

P\Eew\Hi) g a. (67)

The second principle is that, if w0 is the selected region and w any other

region such that

P{Eiw\Hi) £P{Eew0\Hi)

then

P{Eew\H2) g P{Eew0\H2}.

The construction of the critical region w0 having this property is easily

accomplished by the following simple rule, the validity of which will be

proved in general, for any number of discrete observable random variables

.•^l, X2, . • •, A,.

Denote generally by eu e2, •••, en, ••• all possible positions of the

sample point E as may be determined by some observations. Let further

p(e]c\Hi) and p(ek\H2) denote the probabilities determined by the
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62 MATHEMATICAL STATISTICS AND PROBABILITY

hypotheses Hi and H2, respectively, that E will coincide with ek. Here

some of the probabilities p(ek | Hi), i = 1, 2, may be zero while others are

positive. For each point ek for which p(ek | H2) > 0 define the ratio

Pfal/fr)

P(ek | H2)

Lemma. If a is a positive number and w0 a region in the sample space

SUCH THAT IT INCLUDES ALL POINTS ek FOR WHICH R (ek) < a AND NONE OF

THOSE POINTS em FOR WHICH R (em) > a, THEN, WHATEVER BE ANY OTHER

REGION W SUCH THAT

P{Eew\Hi) ^PlEeWolHi), (68)

NECESSARILY

P{Eew\H2} ^P{EeWQ\H2}.

If the regions w0 and w are contemplated as critical regions for testing

Hi, then P{E tw \ Hi} is the probability that Hx will be rejected using w

in those cases when the true hypothesis is Ht. Thus P{E ew | Hi} is the

probability of an erroneous rejection of Hi (that is, rejection when Hx is

true, or the probability of an error of the first kind). On the other hand,

P{E tW | H2} is the probability of rejecting Hi when the true hypothesis

is H2, i.e., it is the power of the test based on w. This property of w0 may

be described verbally by stating that out of all critical regions w which

control the errors of the first kind as well as w0 or better, the critical region

w0 has the greatest power.

In proving the Lemma it will be convenient to use the following notation.

Let u be some region in the sample space and let

ekv e*2, " " ' i ekm

be all the possible positions of the sample point E which fall within the

region u. Then the probability P{E e u \ Ht} that the sample point will

fall within u is given by the sum

m

P{Eeu\Hi} = 2 Pifiki \ Hi).

3=i

It will be convenient to denote this last sum simply by ^3 P(e I Hi).

u

With this notation, the inequality (68) can be rewritten as

£P(e|tfi)££P(e|ffi)

wo w

and it follows that, say,

A(ffi) = Z V(fi | Hi) - 2 vifi | tf i) ^ 0. (69)

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

0
 1

5
:4

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

7
2

9
7

9
8

2
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



TESTS OF STATISTICAL HYPOTHESES 63

The two regions w0 and w may have a common part which we will denote

by v. Should there be no common part of w0 and w, then v will stand for

the "empty" set of points. In any case we may write that

wo - (»o -v)+v, I

w = (w - v) + V, J

and it is clear that every point in w - v lies outside of w0.

Obviously A(Hi) can now be rewritten using the summation over the re-

gions w0 - v and w - v,

HBi) = Ip(«| ffi) - E P(« I #1) ^ 0. (71)

tp0 - p i<> - v

The region w0 - v contains only points e* which are interior to w0. Because

of the definition of w0, for each of these points

p(e | Hi) = fl(e)p(e | H2) £ ap(e | ff2). (72)

Therefore, say

A' = a £ p(e | ff2) - £ p(e | #x) £ A(#i) £ 0. (73)

U.0- f 10 V

Since each point e belonging to w - v lies outside of w0, the definition of w0

implies that for each such point

p(e | H{) = R(e)p(e | H») * ap(e \ H2). (74)

Therefore

A(#2) = o £ p(« | ff2) - a E P(« I H») ^ A' £ A(ffx) £ 0. (75)

Since a is a positive number, it follows that

E P(« I ft) fc E p(« I ft). (76)

UJ0 — P 10- V

Adding to both sides of this inequality the same sum E P(e I ft)i we obtain

the desired result, namely,

P\E « wo I H2) = E P(« I ft) £ E P(« I ft) = P{tf « w I Ht). (77)

100 IP

This completes the proof of the Lemma.

It follows from the Lemma that the operations necessary for determining a

best critical region for testing Hx with respect to a single alternative hypoth-

esis H2 are the following.

(i) Compute the ratio R(e) for all possible sample points.

(ii) Renumber the possible sample points in order of the magnitude of

the corresponding ratios R(e), beginning with the smallest .R(ei), so that
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64 MATHEMATICAL STATISTICS AND PROBABILITY

R(ei) g R(e2) S • • • £ '(e*_i) g R(ek) g • • •. (78)

(iii) Include ei in the critical region w0 and also as many of the following

points, e2, e3, • • •, em as possible without impinging upon the condition that

the probability determined by Hi of the sample point E falling within w0

does not exceed a,

m

P[Etw0\Hi\ = Y, P(ei | # i) ^ «• (79)

Returning to the problem of testing the hypothesis Hi concerned with

non-assortative mating and uniform fertility, we could proceed in two

slightly different ways. One of these consists in computing the ratios

R(e) numerically as indicated in step (i). The disadvantage of this method

is that it is somewhat cumbersome and involves ratios of numbers which

are so small that they are not recorded in Tables I and II.

The other method is to compute the formula for R(e). We have, say

p(ki,k2 I Hi)

p(ki,k2 | H2)

(80)

= C(f)*'5*2 = CR'(kuk2).\

where, for the sake of brevity, the letter C is used to denote the numerical

factor

oni+n2gniionj

28ni15'

Ani+moni-t cnj ". '

which is independent of fci and k2. It is obvious that instead of ordering

the points e in the order of magnitude of R(e), we may order them in the

order of magnitude of R'{kik2) or, since this is even more convenient, in

the order of magnitude of, say

r(kik2) = logi0 fl'(fci,fc2) = fci logi0 (f) + fa log10 5 ]

(82

= h (.42597) +&2(.69897)J

Now it is obvious that the first point to be included in w0 is the one cor-

responding to fci = k2 = 0. The next most desirable point is fa = 1, fc2 = 0,

etc. Table III gives the ordering of points (fa, fa) as indicated in step

(ii), the corresponding values of r(fci,fc2), the corresponding probability

determined by Hi and H2 and the cumulative sums of these probabilities.

The most interesting columns in Table III are columns (5) and (7).

Column (5) gives the probabilities determined by Hi that the point E to
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Table III

Steps (it) and (iii) in determining w$

(1)

(2)

of the

Coordi-

point

nates

e<

h, h

ei

0,0

ei

1,0

es

0,1

e4

2,0

e%

1,1

(3)

r(fci, fcj)

(4)

p(«* I Hd -

P(h, *« | Hd

(5)

i

(6)

p(« I Hi) -

P(h, ** | Hi)

(7)

i

.00000

.42597

.69897

.85194

1.12494

.006

.015

.019

.018

.050

.006

.021

.040

.058

.108

.204

.204

.136

.089

.136

.204

.408

.544

.633

.769

be determined by observing xi and x2 will fall within the critical region

w0 including only the point ei, or the two points ei and e2, or three points

ei, e2, e8, etc. These probabilities, then, are the probabilities of wrongly

rejecting the hypothesis Hi when it is in fact true, corresponding to an

increasing critical region w0. For example, if the geneticist decides that

he should not raise false doubts concerning hypotheses more often than

five times in a hundred when such hypotheses are true, then his critical

region should include only three points (0, 0), (1, 0) and (0, 1) with the

resulting probability of an error of the first kind equal to .040. Should

this be his decision, then the probability of detecting that Hi is false when

the true hypothesis is H2 (or the power of the test), is .544. It is found in

column (7) of Table III.

However, the geneticist may compromise on the probability of the error

of the first kind equal to .058, or even .108. Then his chances of detecting

the falsehood of Hi when the true hypothesis is H2 will be .633 or .769,

respectively.

Whichever critical region is finally adopted, including any number of the

first points e< ordered according to the value of r(ki,k2), the Lemma guar-

antees that the power of the resulting test cannot be improved by using any

other critical region which controls the errors of the first kind to the same

(or better) level as the region chosen.

Suppose now, that the values of xi and x2 that were actually observed

are kt = 2, k2 = 0. It follows from the foregoing that, if the geneticist

does not insist on the probability of an error of the first kind being less

than .058, he should go ahead and voice his doubts of the hypothesis H^

of non-assortativeness of mating and of uniform fertility. In taking this
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66 MATHEMATICAL STATISTICS AND PROBABILITY

step he should be aware that the above analysis does not contribute any-

thing about the falsehood or correctness of the particular genetical hypoth-

esis Hi. • In fact, no test can reveal any definite information about any

statistical hypothesis if the values of the observable random variables

which are possible under this hypothesis are also possible under some

alternative one. All the geneticist can be certain about is that, if his

attitudes towards statistical hypotheses are consistently governed by analy-

ses such as the one described, with a fixed value of a, then, in the long

run, the relative frequency of his raising doubts concerning hypotheses,

when such doubts are unjustified, will not exceed a. Moreover, he can

also be sure that, in cases when the hypothesis tested Hi is wrong, the

chance of the above method detecting the falsehood of Hi is as good as or

better than that corresponding to any other method insuring the same level

of control of errors of the first kind.

The reader may be interested in considering critical regions for testing

Hi against H2 other than the ones suggested in Table III. For example,

the reader may wish to compute the probability of error of the first kind

and the power of critical regions whose selection is based on the probability

distribution of #i and x2 determined by Hi. Upon examining Table III

one might perhaps suggest the critical region w' composed of all possible

sample points e for which

p(e | Hi) < .001 (83)

or, perhaps the critical region w" composed of all points such that

p(e | #i) < .005, (84)

etc. It will be seen that regions of this kind will control errors of the first

kind to levels comparable to those of regions w0, suggested in Table III.

However, there will be a marked difference between the two kinds of tests

in their power to detect the falsehood of Hi when the true hypothesis

is H2.
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CHAPTER II

Some Controversial Matters Relating to Agricultural Trials

Part 1. Randomized and Systematic Arrangements of Field Experiments

(The contents of this lecture are based on a conference at the Cosmos Club, Washington,

D. C., held April 7, 1937, under the chairmanship of Dr. Frederick F. Stephan and also

on some sections of papers published in the Supplement to the Journal of the Royal

Statistical Society, Vol. 2, 1935.)

I am going to speak on a very controversial question: Can systematically

arranged agricultural trials be treated with any success by means of mathe-

matical statistics? Two eminent statisticians who are also experts in agri-

cultural experimentation disagree drastically on the answer and each of

them has a number of supporters. One of these scientists, Professor R. A.

Fisher, claims that, in arranging field experiments systematically, we are

bound to obtain all sorts of biases in our estimates and thus to ruin the

statistical tests. The other scientist is "Student" who can be considered,

and rightly so, the father of statistical work in agricultural experimentation.

He does not deny that the formulas usually applied to estimate the experi-

mental standard error in both randomized and systematic trials are in the

latter case somewhat biased and tend to overestimate the error. But it is

his claim that the actual accuracy of a systematic experiment is usually

greater than that of a randomized one. In his opinion, too high an estimate

of the standard error is not especially important, since it keeps the experi-

menter on the safe side.

Members of the present audience who are familiar with the material

of my first two lectures are aware that the answer to the question must

be both empirical and subjective. Since the application of formulas of

mathematical statistics to the results of agricultural trials presumes the

existence of a mathematical model of these experiments, the question under

consideration reduces to one of whether or not the correspondence between

the model and what happens in actual practice is sufficiently accurate.

This question is exactly similar to the one mentioned in my second lecture

(page 23): "Can the formulas of plane geometry be applied to measure

this or that area on the surface of the earth?" Another similar problem

(page 28) is whether or not formulas deduced from the Poisson law of

67
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68 MATHEMATICAL STATISTICS AND PROBABILITY

frequency can be successfully used to estimate the probability that a colony

on a Petri plate is produced by a single individual.

The empirical character of the answer arises from the fact that the

answer involves trials in conditions of actual practice. The subjective

character is unavoidable, because, after we have the results of the trials

and also the corresponding theoretical deductions from their mathematical

model, we must judge whether the agreement is or is not satisfactory. One

of the ways by which the insufficiency of plane geometry may be revealed

consists in subdividing an area of the type it is desired to measure into

several suitable partial ones and in measuring each of the parts. If the

measure of the whole appears to be very different from the sum of the

measures of its parts, then we would say that the assumption that the area

measured is plane is too crude. But it will be up to us to decide whether

the disagreement between the two measures is actually large or not, and

in this respect personal opinions vary.

Having this in view, I am going to give a short account of the work

recently done by Mr. C. Chandra Sekar in the Department of Statistics,

University College, London. This provides the objective empirical part

of the answer to the question discussed by Fisher and Student. The results

that I shall describe are of the same character as those contained in my

second lecture (pp. 30-41): on the one hand you will see figures repre-

senting frequencies of various results, as predicted from the mathematical

models of the agricultural trials, and on the other, the frequencies actually

observed. If the agreement between the two is judged satisfactory, the

conclusion will be that there is no special harm in arranging the experi-

ments systematically. If, on the other hand, you find that the agreement

is bad, you will require an alteration either of the mathematical model or

of the experimental design. For example, you may decide to randomize

your trials.

Now I must enter into details and describe the experiments that I have

in mind. I shall deal with experiments of a very common type in which

the plots are rather narrow, long rectangles all arranged in one row. They

are combined into a few blocks and within each block all the compared

agricultural objects (varieties or treatments) are distributed in one way

or another. This is the general description. If we add to this some details

on the way the objects are distributed within the blocks, we shall obtain

the full description of the two types of arrangements under discussion.

One of these is the so-called arrangement in randomized blocks. In this

arrangement, as you know, each of the objects is repeated in each of the

blocks the same number of times, e.g. once, and the order in which the

objects occur within each block is determined by random sampling. If the

number of compared objects is four and they are denoted by A, B, C, D,
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CONTROVERSIAL MATTERS RELATING TO AGRICULTURAL TRIALS 69

then in a randomized block experiment we may find the following distri-

bution of objects on the successive plots.

Block I

Block II

Block III

Block IV

A C D B

B C A D

C D A B

B A C D

This is one type of arrangement and we know the formula by which we

can calculate the estimates of the true difference between the mean yields

which any two of the objects compared, say A and B, are able to give if

sown over the whole field. It is the difference between the means xA - xB

of the observed yields. Also, we know how to calculate an unbiased esti-

mate s2 of the variance of our result. Owing to the fact that the obser-

vations referring to one block are mutually dependent (e.g., if the object A

got the best of the four plots, then the object B must have gotten one of

the poorer plots), the further theory is not entirely clear.1

It is probable, however, that the application of the t test gives results

very much in accordance with its theory: i.e., the hypothesis tested, namely,

that there is no difference between the mean yields of the objects compared,

is rejected both when it is true and when it is false with relative frequencies

in good accord with the mathematical tables.

Many practical agriculturists find that the objects compared are not

always satisfactorily distributed over the field if the distribution is left to

chance. For example, they would object to the variety B being sown

twice on adjoining plots. In their opinion, the conditions in which the

particular objects are compared should be as equal as possible, and they

think that this is best attained by some systematic distribution of the

objects, such as the following.

Block I

Block II

Block III

A B C D

A B C D

A B C D

etc.

Frequently, though not always, a field experiment arranged in the above

manner is treated statistically by means of the formulas mentioned above,

1J. Neyman with cooperation of K. Iwaszkiewicz and S. Kolodziejczyk: "Statistical

problems in agricultural experimentation." Supplement to the Roy. Stat. Soc, Vol. 2

(1935), pp. 107-180.

See also Michael D. McCarthy: "On the application of the z-test to randomized

blocks." Annals of Math. Stat., Vol. 10 (1939), pp. 337-359.
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formulas meant for randomized block experiments. There is no doubt that

from the point of view of theory this procedure is wrong. The theory of

randomized blocks assumes specifically that the blocks are randomized and

its validity is easily shown to depend on this assumption. However, it is a

question, not of the fact that discrepancies do arise from the disregard of

this condition, but of the size of these discrepancies between theory and

practice.

The above systematic arrangement is very popular in Poland. I spent

much time and wasted much paper trying to persuade practical experi-

menters to randomize their blocks, but with disappointing success. Then

the thought occurred to me that the agreement between theory and practice

may be attained not only by altering the practice, but also by adjusting the

theory. Consequently, I produced a paper2 giving a statistical theory of

the agricultural trials arranged systematically.3

The general lines are as follows. It is assumed that the natural level

of fertility along a field may be adequately represented by a parabola of

some not very high order, say the fourth. If u denotes the coordinate of

the center of any of the plots, starting from the left, so that

u = 1,2, •••,#, (1)

then the true yield of A, if it were tested on the uth plot would be

A(u) = A + bu + cu2+ du3+ eu4, (2)

where A is a term depending on the object A (treatment or variety), and

b, c, d and e are unknown coefficients. The symbol A is used here to

signify both the thing being tested (treatment or variety), and the true

value (as the yield) of the thing being tested. Experience has shown, how-

ever, that confusion does not arise, and in fact the symbolism is a very

convenient one. The true yield of the object B, if it were sown on the

same plot would be given by

B(u) = B + bu + cu2 + du3 + eu\ (3)

where B depends on the object B but the other constants b, c, d, and e are

the same as in equation (2). Similar relations are written for C, D, etc.,

6, c, d, and e being the same for all.

In actual experiments we do not obtain what we call the 'true" yields.

What we obtain is the sum of the true yield plus an experimental error,

2 J. Neyman: The theoretical basis of different methods of testing cereals, Part II:

The method of parabolic curves. K. Buszczynski and Sons, Ltd., Warsaw, 1929, 48 pp.

8 In more recent times my formulae were refound by A. Hald. See A. Hald: The

decomposition of a series of observations. G. E. C. Gads Forlag, Copenhagen, 1948,

134 pp.
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due to various factors, such as inaccuracies in measuring plots, in treatment,

damage by birds, etc. My assumption was that these experimental errors

on particular plots are independent of each other. I then applied the

Markoff 4 theorem to get estimates of the differences, B - A, C - A, etc.,

and of their respective variances.

If the assumptions are granted, the theory is correct. It certainly cor-

responds more exactly to the practice of systematic experiments than the

theory of randomized blocks does, but for a long time there was no answer

to the question of what this correspondence meant in figures. Now some

numerical evidence is available indicating that the theory does correspond

to what happens in practice, at least in one particular type of systematic

arrangement called half drill strip.

This experimental design was invented by Dr. E. S. Beaven 5 who used

it with great success while breeding his renowned varieties of barley. The

half-drill-strip experiments are designed to compare only two objects, say

two varieties, A and B. The varieties are sown in long narrow plots, half

the drill sowing A, the other half B. The varieties are repeated in a system-

atic order as follows.

SANDWICH I SANDWICH H SANDWICH IE

i I t I t

4 I v I t | v ' i \ \ THE WAY OF

A|B, B|A A |B / B A A I B, B|A

* | f ! * J * . \ j / | "HE DRILL

+ 1 + 1 + 1

\ I \ I \ J

(4)

Four consecutive plots form what is called a sandwich, two half drill

strips with B, sown in opposite directions, are enclosed between two with

A, also sown in opposite directions. These sandwiches obviously correspond

to blocks, but the blocks are not randomized.

It will be useful to distinguish between two possible methods of randomiz-

ing the blocks of four plots to be occupied by two varieties only. One

would be a totally unrestricted randomization, allowing arrangements like

AABB, ABAB, ABBA, BAAB, BABA, BBAA. (5)

The second kind of randomizing would consist in randomizing the sand-

4 See F. N. David and J. Neyman: "Extension of the Markoff theorem on least

squares." Statistical Research Memoirs, Vol. II (1938), pp. 105-116.

5 E. S. Beaven: "Trials of new varieties of cereals." Jr. of the Ministry of Agriculture,

Vol. 29 (1922), nos. 4 and 5, pp. 1-28, 436-444.
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wich. This would admit only two arrangements of the block, either ABBA

or BAAB, and the choice between them should be based on some random

experiment such as tossing a coin.

If the sandwiches are randomized as just described, and if xi denotes the

difference between the sum of the two yields of A and the two yields of B

observed on the ith sandwich, then the ordinary theory of randomized

blocks is applicable to the xt. But this is not so certain with respect to a

systematic arrangement like (4). Of course, the arrangement (4) may be

treated by the method of parabolic curves described above. It is a matter

of an easy adjustment of a few formulas and of preparing tables to facilitate

the calculations. But here again we come to the question of whether or

not the scheme underlying the method of parabolic curves corresponds with

sufficient accuracy to what happens in practice.

I shall now discuss the question of the empirical data needed for deciding

whether or not any particular mathematical model corresponds to the

experiments.

When comparing any two objects A and B, of which A is some established

standard, we may desire to obtain evidence that B is better than A. This

reduces to the test of the statistical hypothesis Ho that the true average yield

B of B if sown on the whole field, does not exceed that of A, say A~. That is,

H0 is the hypothesis that

B - A ^ 0. (6)

Whichever one of the mathematical schemes described is applied, the test

of H0 consists (i) in calculating the estimate of A = B - A, say x, (ii) in

calculating the estimate s2/n of the variance of x, and (iii) in referring the

quotient t = x/(s/vn) to Fisher's table of t. If the observed value of t ex-

ceeds the value tabled ta, corresponding to some small value of P, say 0.05

or 0.01, then the hypothesis Ho is rejected and we consider that we have

"evidence" of B being able to give average yields greater than A.

The whole question under discussion, i.e., whether or not the field trials

must be randomized, whether or not the non-randomized trials give any sort of

bias in the statistical tests, is reduced to the following:

(1) Whether or not, in cases when the hypothesis tested Hq is true, and, in

particular, when A = B, the value of t = x/(s/vn) calculated by this or

that method exceeds the fixed value of ta with the frequency a = P/2 pre-

scribed by the theory.

(2) Whether or not, in cases when the hypothesis H0 is wrong and thus

B - A = A > 0, the t test detects this circumstance, the value of t falling

above the critical ta, with a frequency predicted by the theory.

If, on any empirical evidence, either of the above two questions were to be

answered in the negative, then we should say that the mathematical model
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that served as a basis for calculating t = i/(s/Vn) does not correspond to the

actual trials, and that either the model or the experimental design should be

altered. If, however, a considerable volume of empirical data fails to deny

either 1 or 2, then the practical man would probably say that, from a purely

academic point of view (which may be interesting by itself), there may be

disagreements between the experimental technique and its mathematical

model, but that these disagreements do not concern him. In fact, the

statistical test gives all it is expected to give; it rejects the hypothesis tested

H0 when it is in fact true as frequently as expected, and it detects the false-

hood of Hq when it is wrong with about the same frequency as predicted by

theory.

It is seen, therefore, that the whole question is reduced to what is the actual

empirical distribution of values of t in cases when A = E, and in cases when

B - A = A > 0. We must discuss the question of how such empirical

distributions can be obtained.

It is easier to obtain an empirical distribution of t for the case when X = E

than for the case B - A > 0. We have to use for this purpose the results of

so-called uniformity trials. Imagine a large field divided into a number of

very small plots, considerably smaller than the ones used for actual experi-

ments. To avoid misunderstanding, we shall call them elementary plots.

If you treat all these plots in exactly the same way, so far as possible, and sow

them with the same variety, you will have a uniformity trial. The results of

such trials, represented by a plan of the experimental field with the yields of

single elementary plots, are to be found in various publications. However,

not all of them are equally suitable for our purpose, mainly because the ele-

mentary plots used are not sufficiently small, or because they differ con-

siderably from squares. If the elementary plots are very tiny squares, then

they can be combined in various ways to form what could be real experimental

plots. If we wish to see what the results of some particular experiment on

this field would be, as in comparing some objects A, B, • • •, which are in fact

identical (though we are not aware of it), we simply assign these hypothetical

objects to particular plots and then perform all the calculations on the figures

provided by the uniformity trial and apply the tests that we should apply if

we had to deal with an actual experiment. If the elementary plots are large

or very long, then the same procedure can be applied; but it may be hard to

produce experimental plots of the desired size and shape.

For our purpose we should need uniformity trials with elementary plots

that could be combined into half drill strips. Suppose that many such

hypothetical half drill strips are available in the form of a table like the

following, where each rectangle represents a half drill strip and the figure

written on it the sum of the yields of the elementary plots of the uniformity

trial of which the experimental plot is composed. They would be the actual
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101

107

102

97

101

102

106

113

114

106

99

101

T

T

1

1

T

T

I

I

T

T

i

1

A

B

B

A

A

B

B

A

A

B

B

A

etc.

yields obtained on these plots in an experiment with two hypothetical but

identical varieties A and B. Writing in successive letters A, B, B, A, etc.,

on the plan of the hypothetical experiment (as shown), and applying any

given mathematical model, we can calculate t, knowing that it refers to the

case where A = B. A set of such values of t, calculated from the results

of a number of uniformity trials, will produce the distribution we want to

compare with the theoretical one deduced by Student, namely,

1/2

p(t) = C(l + z2)-

(7)

where t2 = ^(n - 1), and n - 1 is the number of degrees of freedom on

which the estimate s2 is based.

If the sandwiches are randomized, then the estimate of B - A is simply

the arithmetic mean x of the numbers x,. as denned above, and

r (xi-xf

— - 2j

n n(n - 1)

(8)

As far as I am aware, the first authors to run tests on uniformity trial data

to see whether or not the distribution of x/(s/\<n) from non-randomized

sandwiches followed Student's frequency of t, were S. Barbacki and R. A.

Fisher.6 They came to the conclusion that the lack of randomization is de-

structive to the t test, and they blamed Student for thinking differently. It

seems to me, however, that Barbacki and Fisher were a little unfair to Student,

and that the figures they produced are entirely valueless.

Barbacki and Fisher took just one uniformity trial for which weights of

yields of wheat on short parts of single rows were published.7 They

combined the adjoining rows to obtain the width of a half drill strip. The

rows were long and they divided them into 12 columns and so obtained

12 columns of hypothetical half drill strips, each being a continuation of

the strips in other columns. These columns were interpreted as representing

the results of six hypothetical experiments comparing some variety A

6 S. Barbacki and R. A. Fisher: "A test of the supposed precision of systematic arrange-

ments." Annals of Eugenics, Vol. 7 (1936), pp. 189-193.

7 G. A. Wiebe: "Variation and correlation in grain yields among 1500 wheat nursery

plots." /. Agric. Res., Vol. 50 (1935), pp. 331-357.
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EXPERIMENT NUMBER—— (I) 12) 13) 14) ETC.

y

COLUMNS —

ixf

\ \

6 7 8

/

/

/

10 II

12

SANDWICH

SANDWICH

A

A

A

A

B

B

B

B

B

B

B

B

A

A

A

A

_ t

re. -

A

A

A

A

B

B

B

B

B

B

B

B

A

A

A

A

ROWS

I

2

3

4

5

6

7

ETC.

with another B. Experiment No. 1 would consist of sandwiches in columns

1 and 7; experiment No. 2 would consist of sandwiches in columns 2 and 8;

etc., as marked in the figure. The two authors calculated t for each such

experiment and were pleased to find that, in spite of the fact that the

hypothetical varieties A and B were identical, the distribution of the

empirical t was far from similar to the theoretical one. In fact, all values

of t had the same sign! This, of course, was to be expected because the

values thus calculated were not independent. It is known that the direction

of rows is frequently that of ploughing and that in this direction we fre-

quently observe what I call waves of fertility: if one of the plots in the

first row is better than the corresponding plot in the second, then this is

likely to be true for all other plots in these rows. These waves of fertility

are very marked on the field used by Barbacki and Fisher and consequently

the value of t calculated for any one of these hypothetical experiments

could not be much different from the one for any of the others. The whole

argument is as if we would toss a penny just once, look at it six times and,

having recorded six heads, argue that the penny must be biased. The

authors are unfair to Student because he called attention to the fact that

parts of the same strip are highly correlated.8

sStudent: "On testing varieties of cereals." Biometrika, Vol. 15 (1923), pp. 271-293.

See pp. 286-287 in particular.
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It follows that we can not accept the results of Barbacki and Fisher as

conclusive in the question which interests us. Their figures emphasize only

the known fact that there is danger in replicating an arrangement on plots

in adjoining columns because an error in one of the columns is likely to

be repeated in the others. This does represent an advantage for the ran-

domized arrangements but does not show that systematic experiments, if

carried out with due precautions, necessarily give biased results.

There is no doubt, however, that the application of the formula (8) does

represent a crude treatment. This was recognized by Student who, in a

paper published in the Supplement to the Journal of the Royal Statistical

Society, Vol. Ill, pp. 114-136, 1936, suggested a new way of proceeding.

This is based on the hypothesis that the level of fertility along the row

of drill strips is either rising or falling off more or less regularly, so that,

within each pair of half drill strips, the fertility of the next half drill strip

differs from that of the preceding one by a fixed quantity, which Student

called the linear fertility slope. Again, there is no doubt that this assump-

tion does not correspond exactly to what happens in practice, but the

formulas that the new mathematical model involves—let it be called the

new Student's method—have a greater chance of giving satisfactory results

than formula (8). In fact, this method along with that of parabolic curves,

is based exclusively on the assumption that the experiment is arranged

systematically. Whether or not it works well must be tested empirically.

Some work designed to throw light on the question in which we are

interested has been done by one of my students, Mr. C. Chandra Sekar.

He tried to collect as many uniformity trial data as he could possibly find,

and on each field he arranged a number of independent hypothetical ex-

periments in systematic half drill strips. The total number of experiments

was 120. For each experiment the value of t was calculated twice, first by

the new Student's method and then by the method of parabolic curves.

The distributions obtained are shown in Figures 1 and 2. In each case the

empirical distribution was compared with the theoretical Student's distri-

bution using the smooth test9 for goodness of fit. The symbol P{ip2 ^ ^o2}

represents the probability of obtaining by chance an agreement between

theory and observation worse than that actually observed. For the new

Student's method this probability is .173 and for the method of parabolic

curves, .643. The two graphs and the two probabilities represent the

empirical part of the inquiry. Whether the agreement between the theory

and the observation is or is not satisfactory is a subjective question. How-

ever, I submit that, especially as regards the method of parabolic curves,

one could hardly expect anything better.

9J. Neyman: "'Smooth test' for goodness of fit." Skandinavisk Aktuarietidskrift,

Vol. 20 (1937), pp. 149-199.
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Figure 1

( distribution in the half-drill-strip experiments

Method of

parabolic curves

Figure 2

t distribution in the half-drill-strip experiments

Student's method

P(y*ryJ ) = 0.173
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Now let us turn to the question of the effectiveness of the two methods

in cases where one of the varieties, say B, is actually better than the

other, A. In relation to this situation and on the assumption that the

observations are mutually independent and follow the normal distribution,

the theory of the t test is as follows.

(i) It has been shown 10 that the superiority of B over A will be dis-

covered by the t test more frequently than by any other test.

(ii) The frequency of the t test failing to detect a difference A = B — A

when it actually exists and is equal to p times the true standard error a of x

is known and depends on the number of degrees of freedom on which the

estimate of a is based. This is what is technically called the probability of an

error of the second kind. The first short table of this kind was published by

S. Kolodziejczyk.11 This was later supplemented in a joint paper by

K. Iwaszkiewicz, S. Kolodziejczyk, and myself,12 wherein certain graphs are

published, two of which are shown on pages 79-80. Finally, a differently ar-

ranged table was published by Miss B. Tokarska and myself.13

In these graphs n means the number of degrees of freedom on which the

estimate of error variance is based. Further, a means the fixed level of

significance with which you work. To make the diagrams clear let us

consider an example. Suppose you are arranging a randomized blocks

experiment with six treatments and three replications. In this case n = 10.

From previous experience you know that the standard error per plot is

likely to be, say, 10 percent of the average yield, and you want to know

the probability that the experiment will fail to detect as large a difference

between your treatments as 20% of the general mean. The expected value

of your a is 10\/% = 8.16. Your A = 20, and P = 20/8.16 = 2.45. From

the diagram you find that the probability of the t test failing to detect

the difference between the treatments when it is as large as 20 percent

of the average yield is about 0.25 if a = 0.05, and about 0.55 if a = 0.01.

You will probably decide that the experiment planned is not sufficiently

accurate, and you will try to increase the number of replications.

Of course, points (i) and (ii) refer to the ideal case of a complete cor-

respondence between the experiments and the mathematical model involving

the normal distribution and mutual independence of "errors." Our problem

10 J. Neyman and E. S. Pearson: "On the problem of the most efficient tests of sta-

tistical hypotheses." Phil. Trans. Royal Society, London, Vol. 231-A (1933), pp. 289-337.

11 S. Kolodziejczyk: "Sur Perreur de la seconde categorie dans le probleme de M.

Student." Comptes Rendus, Vol. 197 (1933), pp. 814-816.

12K. Iwaszkiewicz, S. Kolodziejczyk and J. Neyman: "Statistical problems in agricul-

tural experimentation." Supplement to Jr. Roy. Stat. Soc., Vol. 2 (1935), pp. 107-180.

See pp. 133-134 in particular.

18 J. Neyman and B. Tokarska: "Errors of the second kind in testing 'Student's'

hypothesis." Jr. Am. Stat. Assoc., Vol. 31 (1936), pp. 318-326.

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

0
 1

5
:4

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

7
2

9
7

9
8

2
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



CONTROVERSIAL MATTERS RELATING TO AGRICULTURAL TRIALS 79

Figure 3

Diagram showing dependence of probabilities of second kind errors on p and n,

when a = 0.05

a - 0.05

M

<*>

a

C\J

o

«

o

K

w

&<

o

M

M

<

PQ

O

Pn

is to see whether or not the existing divergences from this model influence

the validity of the theoretical conclusions.

With regard to point (i) raised above, there are insurmountable difficul-

ties in this respect. There is no way to produce empirical evidence that

in any fixed conditions of experimentation it is impossible to invent a test

that would be more sensitive than the t test. If any other test were sug-

gested, then we could produce empirical results comparing its sensitiveness

to that of t, and this comparison might show that the alternative test is

better than t. But any number of such comparisons, all of them favorable
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Figure 4

Diagram showing dependence of probabilities of second kind errors on p and n,

when o = 0.01

a = 0.01
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to t, would not prove that the t test is actually the best. For this reason,

and because no test alternative to t has been suggested, we shall drop the

question of an empirical test of question (i).

An empirical test of point (ii) is much easier, though it requires a lot

of calculations. In fact, the problem is very similar to that dealt with in

the case where A was identical with B. We start by producing what

could be the results of actual trials in half drill strips, including the actual

inequalities in soil fertility and the actual experimental errors, in which,

however, the true average yield of B is greater by a certain amount than
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that of A. For each such experiment we calculate the value of t and see

how frequently it fails to exceed the critical tabled value of t, that is to

say, how frequently the t test fails to detect the advantage of B over A.

This frequency must then be compared with the probability of an error

of the second kind to be found in the tables mentioned above or read from

the graphs on pages 79-80.

In order to produce the quasi-empirical data for the above purpose we

use again the same uniformity trials that were used before. I have men-

tioned on page 73 that on each of the fields with uniformity trials it is

possible to arrange more than one hypothetical experiment in half drill

strips. Each of them gives an estimate of the error variance. Several such

estimates were averaged, and this average was taken as the true value of

the error variance for the experiments on any particular field.

To see more clearly what was done next, consider the situation on any two

particular fields. The assumed true standard deviations of the estimates of

B - A on those fields are <ti and cr2, respectively. Using the graphs of proba-

bilities on pages 79-80, the values p(20), p(40), p(60), and p(80) of p were

found, for which the probabilities of errors of the second kind are 0.20, 0.40,

0.60, and 0.80. These values of p were than multiplied by oi and <r2 to obtain

what I shall denote by Ai(20), A2(20), A^O), etc., so that, for example,

Ai(20) = <rip(20), A2(20) = <r2p(20), etc.

You will notice that Ai(20) represents the value such that if the difference

between B and A tested on the first field were equal to Ai(20), then the

theoretical probability of the t test failing to detect the advantage of B over

A would be exactly equal to 0.20.

Suppose that the values of At(20), A,(40), A,(60), and A,(80) are calculated

for the ith field. Take one of the hypothetical experiments in the systematic

half drill strips previously arranged on some particular field from data of

uniformity trials, and add A,(20) to all the hypothetical yields of the object

B. Before this addition, the variability of yields from plot to plot was due

solely to soil variation and technical errors, since all the plots were equally

treated and sown with the same variety. After the addition of A,(20) to

the yield of the hypothetical B, we obtain what could be the result of an actual

trial of A and B, including the effect of soil variation and technical errors,

A - B having the property that whatever the true yield of A, the true yield

of B is greater by the amount A,(20). That is what we want for testing the

distribution of t when B - A = A,(20).

Mr. C. Chandra Sekar calculated t for each of the experiments in such

systematic sandwiches, obtained in the above way from the data of uni-

formity trials. Again, both the new Student's method and the method of

parabolic curves were tried. The results, in the form of frequencies of
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non-detection of the advantage of B over A, both observed and theoretical,

are set up in the following table.

Table I

Relative frequencies of failure to detect a real advantage of B over A in systematic half-drill-

strip experiments

Method

Student's

method,

percent

Theory,

percent

of parabolic

curves,

percent

20

40

60

80

23.3

40.8

62.5

78.3

27.5

46.7

61.7

75.8

Again, this is the objective part of the answer to the question of whether

or not the lack of randomization ruins the t test. The first column gives

the theoretical frequency of cases in which the t test should fail to detect

the advantage of B over A. The other columns show what these frequen-

cies would be in a number of experiments in which the variability of the

soil and the experimental errors are exactly as they were in actual uni-

formity trials. Is the disagreement sufficient to say that the t test is of no

use when applied to the systematic half drill strips? This, as I said, is a

personal question. So far as I am concerned, the agreement between the

theory and the empirical results seems to be satisfactory. Especially in

the case of parabolic curves, the t test both detects the advantage of B

when this advantage exists and suggests its existence when it does not

exist with relative frequencies very much the same as indicated by the

theory.

In consequence, I do not see any evidence to support the assertion that

lack of randomization by itself is ruinous to statistical tests. We must,

however, remember the following points.

(i) The above empirical results refer to one particular systematic arrange-

ment in half drill strips: ABBA, etc. It is reasonable that if we take any

other systematic arrangement, the conclusions suggested by the empirical

results may be different. If we take the systematic arrangement of blocks

with more than two objects

ABCA, ABCD, •••,
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then probably the advantage of the method of parabolic curves over the

ordinary formulas for randomized blocks will be more marked than in the

case of half drill strips, but this requires an empirical test.

(ii) The waves of fertility are an important feature that should be borne

in mind in any case and especially when the trials are arranged system-

atically. Whenever I was able to ascertain the direction of ploughing, I

found that the fertility seems to stay steadier along the direction of plough-

ing than across. It seems to me that the direction of ploughing may be

the real cause of these waves, but I have no definite evidence of this.

Sometimes the waves are difficult to detect when you simply look at the

uniformity trial data. In other instances they are very pronounced. The

following table gives a part of the uniformity trial data with rye as

described by Hansen.14 Looking at it you will hardly believe that all the

plots were sown with the same variety and equally treated, but this is a fact.

Table II

Hansen. Yields of rye. Uniformity trial data, 1909

I

1

1

1

2

3

4

5

101

84

113

88

110

107

91

114

88

109

102

94

106

84

106

97

94

99

88

105

101

90

101

84

104

102

86

99

84

102

106

90

100

85

104

106

92

104

85

105

Imagine now that, without knowing the peculiar fertility level of the

field, you use this field for an actual experiment and cut your plots along

the columns. The results would be deplorable. On the other hand, if

long and narrow plots were cut across the columns, the experiment might

have been fairly successful.

If practical circumstances forced one to cut the plots along the columns

of the above, say four rows deep, so that out of each column we had two

plots, then it would be most inadvisable to arrange a systematic experiment

replicated exactly in the two rows, e.g.,

14 N. A. Hansen: "Pr0vedyrkning paa Fors0gsstationen ved Aarslev." Tidsskrift for

Planteavl, Vol. 21 (1914), pp. 553-317.
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ABCD, ABCD, •••

ABCD, ABCD, •••

since the second row would repeat almost identically the same soil errors

as there are in the first. In such circumstances, a randomized arrangement

would be most useful. In this sense, the randomized arrangements do have

definite advantages over the systematic ones.

Turning to the question of the waves of fertility, I think that from the

point of view of accuracy of agricultural trials it would be most useful to

have some indication of their cause. Probably it would not be too difficult

to make a special experiment to discover whether the direction of the waves

of fertility is actually connected with that of ploughing.

Part 2. On Certain Problems of Plant Breeding

(The contents of this lecture are based on a conference held in Room 4090 of the Depart-

ment of Agriculture, April 7, 1937, 10 a.m., Dr. S. C. Salmon presiding.)

The problem I am going to discuss in this conference is a specific one

connected with the breeding of new varieties of sugar beet. However, I

believe that it is of wider interest than its restricted nature would indicate.

Aside from the fact that similar problems arise in breeding other plants,

there is another and a stronger reason for my choice of this particular

subject. The point I want to illustrate is this: the methods of mathe-

matical statistics may be useful not only in treating isolated trials as, for

example, those discussed in the preceding conference but also in forming

the over-all policy of an organization. The particular organization about

which I will speak is a sugar beet breeding establishment, but it can be

seen that problems of a similar kind will arise elsewhere.

The idea of the problem originated from contact with sugar beet breeders

in Poland. However, the results that I am going to present are due to

Mrs. Y. Tang, M. Sc, and all of the details are published in her paper

prepared at the Department of Statistics, University College, London.1

The process of breeding new varieties of sugar beets is fairly compli-

cated, but a rough idea of its essence can be obtained from the diagram

on page 85 which represents schematically five distinct steps. In con-

sidering these steps, we must remember several important points concerning

sugar beets. The first is that the sugar beet is a two year plant. During

the first vegetative season a seedling produces a plant with a big root

containing a considerable amount of sugar but yielding no seeds. The

seeds are produced in the course of a second vegetative season when the

1Y. Tang: "Certain statistical problems arising in plant breeding." Biometrika, Vol.

30 (1938), pp. 29-56.
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Figure 1

Plant breeding: scheme oj production oj new varieties oj sugar beets
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plant uses the food previously accumulated in its roots in the form of

sugar. The second important point consists in the fact that the sugar beet

is a cross fertilizing plant, and that this makes it extremely difficult, if

not impossible, to produce anything like a pure line. Finally we must

remember that we may have various aims in the production of new varieties:

we may try to produce (i) beets with highest sugar content, (ii) beets with

the highest yield of roots per acre, or (iii) beets with the highest yield of

sugar per acre. The discussion which follows applies to all three cases,

but we shall consider only the first.

Keeping these points in mind, let us consider the diagram and see what

are the five consecutive steps leading to new varieties. The first step con-

sists in choosing from the existing varieties a number of roots which, for

various reasons, seem to be promising, and in forcing them to cross fertilize.

For this purpose the roots are planted in pairs on plots isolated from one

another in a larger field of some cereal. The hope is that the capacity of

producing high sugar content in old varieties may be increased as a result

of crosses between them. But it is clear that a cross must sometimes

increase the capacity of producing a low sugar content. Therefore not all

of the progeny of the crosses are suitable for further breeding, and we

have to perform a selection.

All the seeds produced by the crosses are sown on a larger plot and

produce roots. These form the material for what is called "individual

selection," the second step in our scheme. At the end of the vegetative

period all the roots are lifted, washed, and weighed. A small portion is

cut from each root and analyzed for sugar content. This cutting neither

kills the root nor affects its ability to produce seeds as well as if it had

been left intact. The majority of roots analyzed are discarded as unsatis-

factory. The remaining ones, having the highest sugar content or certain

morphological characteristics indicating that they may be able to produce

high sugar content, are stored for the winter. Then, in the spring they are

planted separately on isolated plots to produce seeds, mostly from self-

fertilization. This is the third step in our scheme. Each of the selected

roots is called a parent plant, and originates a new variety.

Obviously each parent plant is able to produce only a very limited

amount of seed. Therefore, two or more vegetative seasons must be used

to multiply the seeds of the new varieties, and this is described in the

diagram as step IV.

The fifth and last step consists in determining which of the newly bred

varieties possess an advantage in sugar content over some established

standard. We must remember that the sugar content of any individual root

depends not only on the genetical composition of the plant but also, fre-

quently to a greater extent, on various conditions of environment. Conse-
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quently the sweetest of the parent plants selected in step II do not neces-

sarily produce the varieties with the highest sugar content. Also it is pos-

sible that still sweeter varieties might have been produced by some of the

roots grown in step II that, owing to uncontrollable variation of environ-

ment, had small sugar content and were discarded. The field trials (step V)

are meant to eliminate the individual variability of sugar content in roots

of a new variety. We may put it otherwise: analyses in V are a compari-

son of varieties, wherein the properties of individual roots are more or

less ignored.

Needless to say, along with the field trials in step V we continue to

multiply the seeds of the new varieties, and the final decision as to whether

or not any one of them is a success is made, not after one year, but after

several years' trials. However, these are details.

In any event, after the fifth step is concluded, the breeder has to decide

which of the new varieties are suitable to put on the market. Other

families of beets are discarded as failures.

I must call your attention to certain consequences of the fact that the

sugar beet is a cross fertilizing plant and consequently that any single

individual is heterozygous with respect to a number of pairs of genes. One

consequence is that a plant which is called a "new variety" does not repre-

sent anything stable, but changes from generation to generation.

Further, according to a law discovered by Galton and which is a conse-

quence of the Mendelian laws, the change is unfavorable to the breeder:

there is necessarily a regression (i.e., a set-back) in sugar content. This

makes it impossible for the breeder to find just one or two exceedingly

sweet varieties and keep them for reproduction from year to year without

further selection. After a relatively short period, the sugar content of

new generations will drop and the breeder will lose his market. Conse-

quently, each breeder has to repeat constantly the steps described above,

perhaps with certain modifications, and to start step I each year, mean-

while continuing the following steps applied to varieties planted in previous

years.

Another consequence of the instability of the varieties is the instability

of the standard variety, with which the new varieties are compared in

step V. As each variety changes necessarily from year to year, so must

the standard change, even if it bears the same label.

In Poland it is usual to take as standard that variety which in the pre-

ceding year proved to be the sweetest. The beet sugar industry arranges

each year competitive experiments with a number of varieties, produced

by several leading firms. These experiments, carried out in a number of

places in all the beet growing districts of Poland, are made according to

a certain fixed method, with the same number of replications, etc.
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After this somewhat lengthy preliminary, we may turn to the problems

which the breeder must face in deciding on details of his work. These

problems are statistical in character and refer to steps II and V. Their

aim is to see how the breeder is likely to increase his chances of success.

We must now review some of the possible causes of his being unsuccessful.

1. The breeder may be unlucky in choosing plants for his crosses in I.

But this is not a statistical problem.

2. Supposing that the breeder was successful in I, he may be unlucky

in II by failing to select for further breeding the roots that have the best

genetical properties. This is a problem that is partly botanical and partly

statistical. The statistician may advise the breeder to select for further

breeding as many parent plants as he possibly can, so as not to omit the

best ones. I shall call this advice A.

3. Suppose now that the breeder was successful both in steps I and in II,

and, consequently, that some of his new varieties that come for comparison

with the standard in V are better than the standard. Obviously, again he

may be unlucky and lose these new varieties. The accuracy of field trials

is known to be limited and it is just possible that through unavoidable

errors the experiments will fail to detect the goodness of the best varieties,

so that eventually they will be discarded. This, of course, would be most

unfortunate, since it would mean a total waste of a considerable amount

of effort, money, and time. Here again is a problem for the statistician

and he will give what I shall call advice B: make your experiments as

accurate as possible; if you cannot improve the method of experimentation,

then increase the number of replications.

Both advice A and B are sound, of course, but both will seem very

troublesome to the practical breeder. His means are always more or less

limited and, before all, this applies to the arable area at his disposal. You

will notice that each of the advices A and B makes a claim on this area

and the breeder is faced with the dilemma: to select more roots in step II

and then make fewer replications in the comparative trials in step V, or

to select fewer roots, to start fewer varieties each year, and then to com-

pare them with the standard, using many replications. If he selects too

few roots in step II, he is likely to have poor material from which to

choose and he may be unsuccessful even though his trials in step V are very

accurate. If he starts a great many new varieties in step II, his chances

of having some good ones are high, but if the trials in step V have few

replications, the best new varieties may go undetected.

The decision as to the number of new varieties to be started each year

and as to the number of replications in the comparative trials to be made

is just the matter of the breeder's general policy which I want to discuss.

This is not a problem strictly limited to plant breeding. Its generality may
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be judged from the following example taken out of an entirely different

field. Imagine a squadron of twelve bombers facing twelve ships of an

invader. Each of the twelve bombers may be directed to attack a separate

ship. The argument is that, given good luck, all of the twelve ships may

be sunk. On the other hand, the twelve bombers may be directed to

attack, say, three selected ships, four planes to a ship. In this case, no

more than three ships can be sunk, but it is obvious that the chances of

sinking at least one ship are much better. The problem of the right dis-

tribution of the attacking air force among available targets of equal priority

is essentially the same problem of general policy which is faced by the

plant breeder.

The policy problem of the plant breeder was dealt with by Mrs. Tang

with particular reference to sugar beets. Her results show how to calculate

approximately the results of plant breeding for any given ratio of the

number of new varieties and the number of replications used. Of course,

the final appreciation of the results of such calculations must depend on

many local conditions.

It is interesting to note that the solutions of the above problem, advanced

by practical breeders, most probably on intuitive grounds, differ enormously.

The number of new families of sugar beets started yearly by Polish breeders

goes into hundreds, while the number of replications they use is sometimes

as small as four, and to my knowledge, has never exceeded sixteen. On

the other hand, the breeders of barley in England and Ireland start with

only four or perhaps five new families and then test them in 40 half drill

strips! It is entirely possible that this difference is due to special charac-

teristics of the two particular plants and also to the cost of land, labor, etc.

But it is possible also that the general intuition of the practical worker

was, in one case or in the other, misled.

Now I must recall the nature of the errors that may be committed when

testing statistical hypotheses. In doing so, I will treat the particular case

of the comparison between a new variety V and the standard S. Denote by

V and 5 the true average sugar content that the two varieties would yield if

each were sown on the entire experimental field and if there were no technical

errors. We are interested in the difference

a - 7 - S, (i)

which may be termed the true sugar excess of the variety V over the standard

or, for short, the sugar excess. If A is positive, the new variety will be con-

sidered satisfactory. Otherwise it will be a failure. The experiment does

not give us the true value of A but only the estimate x of A which is always

affected by a positive or negative experimental error e, so that

x - A + «. (2)
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Before the variety V is placed on the market, the breeder wants to have

some "evidence" that it is satisfactory, i.e. that A (not x) is positive. He

must be particular on this point for frequently, otherwise, he will have

inferior goods and lose his customers. In this instance, mathematical sta-

tistics is helpful and provides means by which the frequency of cases when

A is judged positive without, in actual fact, being positive can be reduced

to any low level a chosen in advance, a is called the level of significance.

Statistically, the problem of the breeder is reduced to testing the hypoth-

esis H0 that

V - S = A g 0. (3)

If, as a result of our test, we decide to reject the hypothesis H0, this is

equivalent to a recognition that we have "evidence" of A being positive,

i.e. of the new variety being better than the standard.

The test of the hypothesis H0 consists in the rule of rejecting H0 whenever

- > ta, (4)

s

where s is the estimate of the standard error of x and ta is a constant number

taken from Fisher's tables corresponding to the number of degrees of freedom

on which the estimate s is based and to the tabled P = 2a. This test was

originated by Student.

The properties of this test are: (i) whenever the new variety is barely

as good as the standard, i.e. when A = 0, the hypothesis tested will be

rejected (this is equivalent to placing an unsatisfactory variety on the

market) with a relative frequency equal to a; (ii) whenever H0 is true and

the new variety is worse than the standard, i.e. when A < 0, the relative

frequency of rejection will be even smaller than a; (iii) whenever H0 is

wrong and the new variety is superior to the standard, i.e. when A > 0,

then the above test will detect this circumstance more frequently than

any other imaginable test having properties (i) and (ii).2

We must be clear on this point and, therefore, let us consider some

numerical illustrations. One breeder A may desire that the proportion

of his unsuccessfully bred varieties which reach the market should not

exceed 5 percent. In this case, the level of significance being a = 0.05,

he finds in Fisher's Table IV the value of t corresponding to P = 2a = 0.10.

If the number of degrees of freedom is 12, then t = 1.782. Thus he will

reject the hypothesis H0 and say that his variety is good enough to be

put on the market when x > 1.782s. Another breeder B may consider

that to allow 5 percent of his unsatisfactory varieties to go on the market

2 J. Neyman and E. S. Pearson: "On the problem of the most efficient tests of statis-

tical hypotheses." Phil. Trans. Roy. Soc, London, Vol. 231-A (1933), pp. 289-337.

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

0
 1

5
:4

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

7
2

9
7

9
8

2
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



CONTROVERSIAL MATTERS RELATING TO AGRICULTURAL TRIALS 91

is too great a risk; he may consider that the proportion of such varieties

should not exceed 1 percent. In such a case, he would put a = 0.01 and

select t corresponding to P - 2<x = 0.02. On this basis he would let through

his new variety only if x > 2.681s. Other breeders may be even more

cautious.

Question by Dr. Sarle: Is there any danger of being too cautious?

Answer: Yes, there is, and I am most grateful for the question. The

danger consists in that, whenever we are too particular in trying to avoid

unjust rejections of the hypothesis tested, i.e. rejection when it is in fact

true, then we are exposing ourselves to an increased risk of failing to detect

cases when the hypothesis is false. This problem is sufficiently important

to justify a little digression.

It will be convenient to use the special terminology introduced in Chapter I,

Part 3, to distinguish between the two kinds of error that we may make when

testing a statistical hypothesis and, in particular, when judging whether a

given variety is or is not better than the standard. If, as a result of a test,

we reject a hypothesis when in fact it is true, we say that the error committed

is of the first kind. Thus, when the breeder puts on the market a variety that

does not exceed the standard, he commits an error of the first kind. On the

other hand, an error of the second kind consists in accepting the hypothesis

tested when in fact it is false. Thus, when the breeder does not find sufficient

reason for judging his variety satisfactory (i.e. when x/s ^ ta), whereas his

new variety is actually sweeter than the standard (i.e. A > 0, though he does

not know it), he commits an error of the second kind.

Errors of the first kind are dangerous to the trade of the breeder, but then

so are errors of the second kind. It must be remembered that each rejec-

tion of a satisfactory variety means a complete waste of effort and money

spent for a substantial number of years: after all the years of work a

variety exceeding the standard in sugar content is successfully produced

and then an error of the second kind causes this variety to be discarded.

Thus it is necessary to have as clear an idea as possible regarding the

chance of committing an error of the second kind. Numerical evaluation

of the probabilities of errors of the second kind are based on charts repro-

duced in the preceding chapter.

In the present notation, the "standardized" error of the second kind is

P = - = (5)

a a

This is the true value of A divided by the true value of <r, where <r is the

true standard error of x (not the estimate s of a).

To illustrate the use of the diagrams in answering the question raised

by Dr. Sarle, we suppose that the arrangement contemplated for a future
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experiment is in randomized blocks with three varieties and six replications

which gives n = 10 degrees of freedom. We suppose further that previous

experience indicates that a may be taken as something like 0.5. In these

circumstances, let us see what would be the chance of detecting that a

particular variety is better than the standard when A is actually positive

and as large as 1 percent. In order to answer this question, we calculate

p = A/a = 2 and refer to the curves corresponding to n = 10 on pages 79-

80. We see that if we use the level of significance a = 0.05 (Figure 3,

page 79), the probability of an error of the second kind is about 0.42. On

the other hand, if a = 0.01 (Figure 4, page 80), the probability of this is

0.65. This means that, if the true value of the mean excess is as large

as 1 percent and if we use alternatively a = 0.05 and a = 0.01, then in

the circumstances of the experiments the mere existence of the advantage

of a new variety over the standard will be detected in only about 58 or 35

cases, respectively, out of a hundred. From this you can see how the

excess of caution with respect to errors of the first kind (0.01 in place of

0.05) leads to an increased chance of committing errors of the second kind

(65 out of 100 in place of 42 out of 100).

Returning to the main subject of the conference, we notice that the

graphs describing the dependence of the probability of errors of the second

kind on the value of p and n are relevant from the point of view of the

problems in plant breeding which we are considering. In practice, after a

few years of existence, any seed breeding establishment must be aware of

the size of the standard error per plot, say <r0, which is likely to hold in

future experiments. It is impossible to predict the exact value of a0, but

it is certainly possible to make rough estimates of its upper limit. There-

fore the breeder who contemplates experiments with m replications is

able to substitute some reasonable number for a into the expression for

p = A/a, taking

Z5

<T = <ro \

V m

(6)

m

He may then use tables or graphs of probabilities of errors of the second

kind to find out what approximately will be his chance of detecting the advan-

tage of his varieties when A = V - B has any value in which he may be

interested. If he finds that, given a certain value of m, this chance is too

small, then he will consider increasing the number m of replications. The

increase of m will decrease the value of a, increase the value of p, and conse-

quently decrease the probability of an error of the second kind, i.e. the proba-

bility of failing to detect a good variety. This procedure must be considered

essential in any rational planning of experiments.
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But in the case of the plant breeder a special difficulty arises. Suppose he

finds that, with five replications and a = 0.05, the probability of detecting a

good variety for which V exceeds the standard S by 5 percent is fairly large,

say 0.9. It will be seen that this result is not very helpful. In fact, it is

difficult to say beforehand how frequently his steps I through IV (page 85)

will yield him new varieties which exceed the standard in sugar content by

as much as 5 percent. It is possible that such success in breeding is unthink-

able and that usually A does not exceed, say, one-third of a percent.

If one looks at the above mentioned graphs, it is easy to find that in

such a case the chance of the breeder detecting the goodness of any of his

varieties will be very small. Thus, if he keeps arranging his experiments

with only m = 5 replications, practically all of his efforts in breeding new

varieties will be wasted.

It is seen that the solution of the breeder's problem requires knowledge,

not only of the probabilities of errors of the second kind, but also of the

distribution of A in the population of new varieties which the breeder is

likely to obtain in the future. It is impossible to predict what will happen

in the future but it is possible to make rough guesses by studying what has

happened in similar circumstances in the past. We may try to estimate

the distribution of A in past years and use these estimates to obtain an

idea of what may happen in the future.

The problem may be stated as follows. In some particular year, M

experiments, comparing a large number N of new varieties with the same

standard, gave N estimates, xi, x2, • • •, xN, of sugar excesses corresponding

to the iV varieties and M estimates, su s2, • • •, sM, of standard errors cor-

responding to the M experiments. It is required to use these numbers to

estimate the distribution, say p(A), of the true excesses Ai, A2, • • •, Aw, of

the new varieties.

A similar problem was considered previously by Eddington and the

solution is quoted by Levy and Roth.3 However, Mrs. Tang offers a new

approach. Her method consists of the following.

Denote by pk and vk the fcth moments about zero of x and A respectively,

and by <r2 the variance of the experimental error « in the observations x.

If the traditional assumption is made that t is normally distributed, then,

as Mrs. Tang has calculated,

(7)

ml = "1,

_2

m2 = "2 - U ,

A"3 = "3,

P4 = Vi - 6a2V2 + 3<r4..

8 H. Levy and L. Roth, Elements of Probability. Oxford University Press, 1936,

200 pp.
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Mrs. Tang also uses the assumption that a has the same value in all M

experiments. The use of this second assumption is partly justified by the

fact that all the experiments are carried out by the same staff on the

same large field with varieties which have many similar properties. The

common value of a can be estimated then with great accuracy since the

estimate will be based on hundreds of degrees of freedom. This estimate,

s', may be substituted in (7) for a. Next, the observed values of x can

be used to estimate the moments vi, V2, V3, v±. Together with s', they will

yield the estimates of m, /i2, /*3, /*4. Finally, having obtained the /*'s, Mrs.

Tang uses them to fit a Pearson curve which is considered to be an estimate

of p(A).

It is difficult to test the efficiency of this method theoretically. However,

Mrs. Tang tried an empirical test. She started with an arbitrarily selected

distribution represented by the histogram in Figure 2 (shown below). She

Figure 2

Histogram True distribution of A

—^^—— Estimated distribution of A Estimated distribution of x
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CONTROVERSIAL MATTERS RELATING TO AGRICULTURAL TRIALS 95

considered the histogram as the true distribution of N values of A in some

possible two experiments. Next she used Mahalanobis' table * of normal

deviates to produce values of x such as experiments with N new varieties,

when her assumptions are satisfied, might have produced. In a similar

way she obtained M values of the estimate of the error variance, each

corresponding to one hypothetical experiment. After she had obtained

these quasi empirical figures, she applied her method to estimate the dis-

tributions of A and x. Figure 2 shows the results. It is seen that the

continuous curves do agree with the "true distribution" represented by the

histogram.

Question by Dr. Sarle: I am wondering what you used for a check.

Answer: I will explain it again. Let us assume that the true distribution

of A is as follows:

Value of A

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Frequency

1

3

5

9

12

13

14

13

12

9

5

3

1

It is seen here that one of the A's is equal to -6, three others are equal

to -5, etc. Write down the A in one column, thus:

Ax = -6,

A2 = -5,

As = -5,

(8)

A4 = -5,

A5 - -4,

etc.

Next take from the table of Mahalanobis the corresponding number of

values of «; these values are so tabulated that they may be considered as

values of a normal variate about zero with unit standard deviation. Sup-

pose that you find

€i = 0.03,

* = -1.18,

«3 = -0.25, (9)

«4 = 0.53,

etc.

* P. C. Mahalanobis: "Tables of random samples from a normal population." Sankhya,

Vol. 1 (1934), pp. 289-328.
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xi = -6 + 0.03 =

-5.97,

x2 = -5 - 1.16 =

-6.16,

xg - -5 - 0.25 =

-5.25,

x4 = -5 + 0.53 =

-4.47,

Now add these numbers to your A< and you will obtain values which

might be given by experiments if the true a were unity and if the true A

were distributed according to the above table. The results,

(10)

etc.

may now be used to estimate the distribution of x by the method of Mrs.

Tang. Figure 2 represents the results.

You may have noticed that among the hypotheses of Mrs. Tang there

is one that is doubtful. This is that the value of <r is the same in all

experiments. Actually, in dealing with the results of real experiments it

was found that this hypothesis may not be true. So Mrs. Tang checked,

again empirically, that her method was still applicable with a varying

from one experiment to another within limits likely to occur in practice;

Figure 3 shows the fit obtained with varying a.

Histogram

a ^——

Figure 3

True distribution of A

Estimated distribution of A

b Estimated distribution of x

c ^———— Estimated distribution of A

(Variation of a = 20 percent of mean a)
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Having thus obtained an indication that her method does lead to reason-

able results, Mrs. Tang applied it to the problem of estimating the distri-

bution of true sugar excess over the standard in a number of new varieties

tested in 1923 and 1924. The varieties were produced and tested by the

breeders, K. Buszczynski and Sons, Ltd., of Warsaw, who kindly supplied

the numerical data from their trials. Out of a considerable number of these

trials, Mrs. Tang selected 40 carried out in 1923 and an equal number car-

ried out in 1924. These were convenient as they had the same number

of replications, namely 5. In each of the two sets, 120 new varieties were

compared with the standard in a systematic arrangement like this:

S Vi V2 V3 S Vi V2 V3 S Vi V2 V3 S Vi V2 V3 S Vi V2 V3 S

(11)

To work out these experiments, i.e. to calculate the estimates x( of the

sugar excesses A<, and the corresponding standard errors, Mrs. Tang applied

the method of parabolic curves.6 Next she estimated the distribution of A,

the true sugar excess. Figure 4 gives the result referring to 1924. Here

Histogram

Figure 4

Estimated distributions of sugar excess, 10.24

Observed excesses of sugar content of 12O varieties over the standard

Estimated excesses of sugar content of 120 varieties over the standard

True excesses of sugar content

-1.8 -1.6 -ljf -1.2 -1.0 -.8 -.6 -h •£. 0 ,2 Jv .6 .8

EXCESS OP SUOAR IN PER CENT

0 See conference on randomized and systematic experiments, pp. 67-84.
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98 MATHEMATICAL STATISTICS AND PROBABILITY

the histogram represents the observed distribution of x and the continuous

curve the estimated distribution of A.

Similar curves calculated by the breeder may give him diversified and

important information which I shall classify under two headings.

1. He may use such curves in analyzing his method of selecting parent

plants, step II, page 85. If the breeder has recorded how he selected his

plants a few years ago, he may usefully study what the distribution of A

would have been if the selection had been made differently, say by breeding

only half of the families that were actually taken. This would have

allowed him to make a stricter selection of parent plants, taking only the

very sweetest. If he ignores the new varieties that have been bred from

the parent plants assumed to have been discarded in such cases and esti-

mates the distribution of A for the remaining varieties, the breeder will

be able to see whether or not the taking of many parent plants and the

breeding of many new varieties does, in fact, represent a marked advantage.

2. When the breeder has the estimated distributions of A corresponding

both to his actual experiments and also to the stricter method of selection

at step II, he will be able to use the probabilities of errors of the second

kind to see what the final results of his efforts, including step V, would

have been. Let us illustrate this for the estimated distribution of A given

in Figure 4.

The breeder is naturally interested in the varieties, conventionally called

"good" varieties, for which A > 0. Their proportion is represented by the

area of the curve to the right of the origin. The breeder will be interested

to know what proportion of "good" varieties is likely to be detected as

"good" by his field trials when they are arranged according to this or that

plan.

Take any positive value of A within the range of the curve in Figure 4,

calculate the corresponding value of p - A/<r and determine the probability

of an error of the second kind, corresponding to the value of p and to the

number of degrees of freedom considered for the trials. Subtract this prob-

ability from unity and you will obtain the approximate value of the pro-

portion P(A) of good varieties that will be detected as "good" by the

proposed trial.

Now calculate P(A') for a number of successive values A' of A. Next,

for these values A', take the estimated ordinate p(A') of the distribution of A

in the population of your new varieties (as for example, the full line curve of

Figure 4). This ordinate multiplied by 5A is approximately equal to the

proportion of your varieties for which A falls between A' and A' + 5A. Then

the proportion of the new varieties that (a) have their sugar excess F - S

between A' and A' + 5A, and (b) will be detected as good varieties by the

field trials planned will be obtained by the multiplication
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p(A')P(A')5A.

Figure 5 was constructed in this way for the good varieties of Figure 4,

i.e., it was made up from that part of the estimated distribution of A in

Figure 4 lying to the right of the origin. The uppermost curve a of Figure 5

is simply the full line curve lying to the right of the origin in Figure 4.

The dimensions are reduced so that the area under this part of the curve

Figure 5

Distributions of true sugar excess

In population of varieties tested

In population of varieties found significant at a = .05

In population of varieties found significant at a = .01

Probability

Probability

of detecting

of detecting

a good variety

a best variety

m

o ■ .05

a - .01

a « .05

a = .01

5

• A3

.166

.51+2

.288

8

A38

.263

.696

.1+62

10

.1+85

.319

.767

.559

15

.558

.1+10

.865

.711

20

.609

.1+78

.922

.8114.

a = number of replication*

0 .10 .20 .30 .l(.0

EXCESS OP STJ0AR CONTENT, PER CENT
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is equal to unity: we are interested only in "good" varieties and in the

proportion likely to be detected as such.

The lower curves labeled b and c represent plotted values of the products

p(A)P(A), where P(A) corresponds to a = 0.05 or 0.01 and to different

arrangements of the proposed experiments. It was assumed that all the

experiments had been arranged in randomized blocks and differed only in

the number of replications m, marked on each curve. The curves b cor-

responding to a = 0.05 end at the point 0.05 on the axis of ordinates. The

other curves c corresponding to a = 0.01 have this ordinate equal to 0.01.

The area under each curve represents the proportion of "good" varieties

that will be recognized as such for a given a and a given number m of

replications. In addition the curves give the distribution of A for the

"good" varieties that will be detected. You will see that if the stricter

level of significance a = 0.01 is applied and if the number m of replications

is as small as 5, then the proportion of good varieties that will be detected

is very small. You will find its value, 16.6 percent, on the small table

attached to Figure 5, page 99. This number 16.6 percent, is the area

under the curve for a = 0.01 and m = 5, divided by the area under the

curve marked a. On the other hand, if a = 0.05, then the same proportion

rises to 34.3 percent. If the number of replications is doubled, then the

corresponding figures will be 31.9 and 48.5 percent, respectively.

Apart from the proportion of good varieties likely to be detected, the

breeder may be interested in the proportion of those for which the value

of A is not merely positive but exceeds some arbitrary limit, say 0.2 percent

of sugar. Such varieties may conventionally be termed the "best." There

is no difficulty in calculating the proportions of the "best" varieties whose

superiority over the standard would be detected by the trials. We have

only to use the areas of all the curves to the right of the line A = 0.2. The

corresponding figures are given in the two "best" columns of the table

attached to Figure 5. For instance, in the table under "Probability of

detecting a best variety," at a = 0.05 and m = 8, we see 0.696. This means

that the area to the right of 0.2 percent under the curve for a = 0.05 and

m = 8 is 0.696 of the area to the right of 0.2 percent under the curve

marked a.

Figure 5, the table and the method of construction represent the main

result of the work of Mrs. Y. Tang. The breeder who now starts 500 new

varieties each year and replicates them only 5 times in his trials may use

her results to construct curves similar to those in Figures 4 and 5, and

may thus compare the probable results of his work for the cases in which

he started, not with 500 families, but perhaps with 400, 300, 200 and a cor-

responding increase in the number of replications. Having these results

before his eyes he will be able to take into account various economic
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factors and choose the most economical relation between the number of

replications and that of the new families started.

I might conclude here, but it seems advisable to warn the reader that

the actual process of seed breeding is a little more complex than that

presented above. In fact, it is extremely difficult to include in formulas an

exact process of any more or less complicated practical work. This is also

the position in the present case. In order to give an idea of what I have

in mind, I may remind you of one thing that I have already mentioned—

new varieties are tested for more than one vegetative period and in more

than one spot. It follows that the method built by Mrs. Tang refers to

a simplified case. But also it is obvious that she has contributed to our

technique by showing how to calculate the probable results of only one

series of field trials when no such method existed before. And even

though this is not all that is needed, it is a great deal because the most

difficult part of any problem consists in noticing that there is a problem

and in advancing some sort of solution. There are usually a lot of people

able to introduce the necessary corrections and extensions.

Question by Dr. Sarle, pointing to Figure 5: What basis do we have

for figuring the possibility of including some "false good" varieties in this

area? Will all poor ones be eliminated by this process, or is there a

chance of getting some of the poor ones?

Answer: Figure 5 refers only to those varieties that are really "good."

The control of "false good" varieties is kept by choosing a proper level of

significance. If you fix a = 0.05, then the chance that the best out of the

"false good" varieties (those with A = 0) will be passed as good is 0.05.

On the other hand, the areas under sections of the curves in Figure 5 give

the proportions of the varieties that are really "good."

Question by Dr. Sarle: Your method automatically does that?

Answer: In principle, yes: but we must remember that the method gives

only an estimate which is always liable to error.

Question by Dr. Sarle: How does it know which one to pick out?

Answer: It doesn't. It would be a great thing if it did. All that it can

do is to estimate proportions. If you toss a fair penny, you can never tell

exactly when it will fall heads. On the other hand, you can safely say that

in the long run the proportion of heads will be about one-half. Similarly,

no statistical method is able to indicate which of the varieties with positive

x is really "good" and which is "false." On the other hand it is possible

to estimate the proportion of those that are really "good" and also the

proportion of their number which will be detected as "good."

Question by Dr. Salmon: This means that with five replications you

actually identify only a relatively small percentage of the total number

of good varieties.
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Answer: Yes, a very small percentage. But we must remember that

the accuracy of experiments varies a great deal from year to year, owing

to weather conditions. As a matter of fact, in the year 1923 which was

also studied by Mrs. Tang, the proportion was found to be much greater

than that indicated here.
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CHAPTER III

Some Statistical Problems in Social and Economic Research

(This chapter is dedicated to the memory of Dr. Kazimicrz Karnilowicz, the late

Director of the Institute for Social Problems, Warsaw, Poland.)

Part 1. Sampling Human Populations. General Theory.

The present section is based on a conference held in the Auditorium of

the United States Department of Agriculture, April 8, 1937, Dr. Frank M.

Weida presiding. At this conference, I summarized my general ideas on

sampling human populations and gave some theoretical results which I had

obtained in connection with a sampling survey of Polish labor conducted

by the Institute for Social Problems in Warsaw. The methodology devel-

oped was originally published in Polish.1 Later on, the main theoretical

results were incorporated into a critical survey of sampling methods, pub-

lished in English.2 The numerical results obtained in the sampling survey

by the Institute for Social Problems were published by Jan Piekalkiewicz.3

The subject of the conference of April 8, 1937, was selected as a result

of numerous letters received from prospective members of the audience.

All these letters visualized the following general situation: a certain amount

of money is available for a survey and the problem is to determine the

sampling procedure which will make the best use of these funds. Such

differences as were present in the several particular problems described in

the correspondence referred to specific circumstances of sampling and to

special characteristics of the population studied. The purpose of the con-

ference was to develop some general ideas from which answers to a number

of particular questions could be derived.

One of my correspondents had in mind a population of 300 cities. In

order to study this population he intended to select a sample of 25 cities

1 J. Neyman: An Outline of the Theory and Practice of the Representative Method

Applied in Social Research. Institute for Social Problems, Warsaw, 1933, 123 pp.

(Polish).

2 J. Neyman: "On the two different aspects of the representative method." Jr. Roy.

Stat. Soc, Vol. 97 (1934), pp. 558-625.

3 Jan Piekalkiewicz: Report on the Study of the Structure of Polish Labor. Institute

for Social Problems, Warsaw, 1934, 238 pp.
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104 MATHEMATICAL STATISTICS AND PROBABILITY

to be covered by a 100 percent enumeration. His question was how best

to select 25 cities from the 300 so that he could draw conclusions regarding

the inhabitants of all the 300 cities under investigation.

I am not going to answer this question. Instead I am going to advise

as strongly as I can that the proposed method of sampling be dropped

altogether. This method is most dangerous and is practically certain to

lead to deplorable results. Of course, I do not mean by this that a success-

ful inquiry by means of sampling is impossible. On the contrary, it is my

opinion that the sampling method is useful and can provide very accurate

results. What I emphatically protest against is the selection of any 25 cities

for a complete census (100 percent enumeration) with the consequent total

omission of the remaining 275 cities.

Broadly speaking, there are two essentially different methods of sampling

used in social work. One is called the method of purposive selection, the

other that of random sampling. This subdivision is a little artificial, but

owing to the fact that it was used in a special report4 on the method, pre-

sented to the International Statistical Institute, it is generally accepted.

The method which consists in selecting 25 out of 300 cities and in limiting

the investigation to these 25 cities falls under the heading of "purposive

selection." The mere question of how one should best select these cities

suggests that the selection was not meant to be random, at least not

entirely random. Usually it is suggested that the sample of cities should

be selected so that the averages of certain characters, called controls, calcu-

lated for the sample and for the universe should be in as close agreement

as possible. It is this circumstance which justifies the term "purposive

selection." But it is not the limitation of the randomness of sampling

which makes the method dangerous. In fact, if the question concerned

only random sampling, I could easily answer it by saying that the best

way of selecting the 25 cities is to draw them at random.

The trouble with the method lies in the fact that if we try to select

things (cities, districts, etc.) "purposely," then both the total number of

units from which selection is to be made, and even more inevitably, the

number selected must necessarily be small, and therefore the units them-

selves must be rather large. In the present case we have 300 units out of

which only 25 are to be selected. Each unit of selection is a city inhabited

probably by tens of thousands of people, possibly more, and the differences

between the units may be enormous. This is a rough description of the

method called "purposive selection."

The nomenclature "purposive selection" and "random sampling" is not

very felicitous, as I have already indicated. It does not describe the

4L. A. Bowley: "Measurement of the precision attained in sampling." Bull. Inst. Int.

Stat., Vol. 22 (1925), lcr livre, pp. 1-62, supplement.
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essential difference between the two methods when they are applied in

practice. The first method, that of "purposive selection," consists in

dividing the whole population into a comparatively few (say 300) large

groups (e.g. cities) or units, of which some 20 or 30 are selected "purposely."

The essential feature of the other method is that the same population is

divided into a much larger number (say 100,000 or more) of small groups

(e.g. families, inhabitants of single houses, blocks, etc.) from which a

sample of around 1000 or more are selected, either entirely at random or

at random with some restrictions.

The first method is hopeless, the other extremely useful. If anyone

would like to see theoretical reasons for this opinion, he will find them in

my paper published in the Journal of the Royal Statistical Society, already

quoted. In this conference I will give an intuitive illustration of the ideas

expressed there. Suppose we have a hundred dollars that we decide to use

for gambling in a fair game. If we divide the whole sum into, say, five

parts of $20 each and bet only five times, it is impossible to make a reliable

prediction of what the result may be. We may lose all our money, or

equally easily, we may double it. On the other hand, if we make a hundred

bets at $1 each, then we can make some predictions with fair hope of

success. The result of the game still remains uncertain, but it would be

rather surprising if the sum won or lost exceeded $20. The accuracy of

the prediction would be still greater if, instead of making a hundred bets

at $1, we would make a thousand bets of a dime.

These are perfectly intuitive propositions and you will notice that they

have a definite bearing on the problem of sampling human populations.

The advice against selecting 25 cities out of a total of 300 is not based on

theoretical considerations alone: some practical experience is available to

show what the result of an inquiry might be if this method is applied.

In 1926 or 1927 two Italian statisticians, Gini and Galvani,5 had to

solve a problem of a kind that is exactly similar to the one contemplated

here. They had to deal with the data of a general census. The data were

worked out, a new census was approaching, and the room had to be cleared

for the new data. The old data were to be destroyed, but the statistical

office wanted to keep a representative sample so as to have material for

future studies, as yet unanticipated. Gini and Galvani were responsible for

the method of obtaining a sample which would represent the situation in

the whole of Italy. What they did is a good example of how not to

sample human populations.

The two authors carefully considered the problem, took into account

5 Corrado Gini and Luigi Galvani: "Di una applicazione del metoda rappresentativo

all'ultimo censimento italiano della popolazione." Annali di Statistica, Serie vi, Vol. 4

(1929), pp. 1-107.
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the Report of the International Statistical Institute and decided to apply

the method of purposive selection. The whole of Italy was divided into

214 administrative districts called circondari and out of these 29 circondari

were selected to form the sample. Some of the circondari are large districts

with more than a million inhabitants. It is interesting to note that the

ratio of the Italian sample to the universe sampled, 29:214, is substantially

larger than the sampling ratio contemplated by my correspondent, 25:300.

Various averages for each circondario had been calculated previously.

Gini and Galvani selected 12 characters of the circondari to serve as con-

trols and subdivided these into essential and secondary controls. They

tried to select the 29 circondari so that the means of the essential controls

calculated from the sample would be practically identical with those for

the whole population. They also tried to reach a reasonable agreement

between the population and the sample means of the secondary controls.

If you will look at the figures, you will find that the agreement of the mean

of each control in the sample with the mean of the same control in the

population is very good.

From the paper by Gini and Galvani, it is uncertain whether or not the

old Italian census data were destroyed and the sample was left for future

reference. However, the two authors decided to check the goodness of the

sample by comparing its various characteristics with those known for the

whole population of Italy. The results of this comparison are described

by Gini and Galvani and should be kept in mind as an argument against

the use of the purposive selection method. Gini and Galvani found that

the distributions of various characteristics of the individuals, the correla-

tions, and, in fact, all statistics other than the average values of the controls

showed a violent contrast between the sample and the whole population.

Figure 1 reproduces a diagram taken from page 95 of the paper by Gini

and Galvani, which illustrates the situation. You will see that the distri-

bution observed in the sample bears little resemblance to that of the whole

population.

Having discovered that their sample of 29 circondari is not at all repre-

sentative of the whole population, the Italian statisticians expressed the

opinion that, generally, it is impossible to obtain a sample that reproduces

the population sampled and all its properties. Strictly speaking, they are

correct. In 1926 there was in Italy but one Marchese Marconi, the great

inventor in the field of wireless telegraphy. Whatever the method of

sampling, the proportion of Marconis in the sample can not be equal to

that in the population. But we do not take samples to establish such pro-

portions; and both theory and experience indicate that, whenever we have

in mind a truly statistical problem of estimating means of any size, of
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AGRICULTURAL POPULATION

Whoie country

Sample

10 20 3 0 40 50 60 7 0 80 90 100

PROPORTION OF POPULATION ENGAGED IN AGRICULTURE

(Taken from page 95 of Gini and Galvani's article in the Annali di Statistica, Serie vi,

Vol. 4, 1929)

regressions, etc., a properly drawn sample is, for all practical purposes,

sufficient.

Now let us consider what is to be done to get a reliable sample. Here

we must rely on the theory of probability and work with great numbers.

"Great numbers" does not mean great numbers of people included in the

sample, but great numbers of random selections to form a sample, or great

numbers of units that are drawn separately. The sample of 25 cities or

the sample of 29 circondari contain a great number of people, but from the

point of view of sampling theory they are both small samples because they

are composed of 25 or 29 units, respectively. For a sample to be reliable

the number of units must be large.

Thus, instead of dividing your population into 300 parts, each representing

a particular city, you need to carry the subdivision much farther. Probably

it would be best to divide the whole population of 300 cities into small

groups inhabiting single houses or blocks. All these groups, which I shall

call units of sampling, or simply units, must be listed, and the necessity

of listing usually imposes a limit to the tendency of having the units very

small.

When the population sampled is represented by the mass of records
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obtained by a general census, then the smallest unit you can choose con-

veniently is the smallest division for which there is a separate folder in

your data, or for which you have a separate punch card. This division

may represent a block, a household, etc., the smaller the better. Ordinarily,

since such divisions are small, there is a great number of them in the

population studied. Therefore no great difficulty occurs in sampling from

existing records. The situation is much more difficult if you are to sample

people, not records already collected. In this case you have to send

enumerators into the field and give them addresses at which to call. In

order to insure randomness of the sample, the addresses must be selected

truly at random and this requires a previously compiled list of all addresses

forming the population. Frequently such a list is unavailable and this

causes considerable difficulty. However, this difficulty may be overcome

in part by using a map that divides the area under investigation into a

large number of small sections and by considering each section as a unit

of sampling. Whatever the selected unit, it is a relatively simple matter

to produce a random sample of any preassigned size once you have a com-

plete list of the units forming the population.

Several questions addressed to me were concerned with what proportion

the size of the sample should bear to the size of the population. This pro-

portion does affect the precision but in a much milder way than the

number of units selected to form the sample. Thus, a sample of 10,000 units

(blocks, inhabitants of separate houses, etc.) will be very accurate almost

irrespective of whether it forms 10 percent of the population studied or

one percent or one-tenth of a percent.

The process of random sampling may be of various forms which are not

equivalent from the point of view of the accuracy of the results. The first

attempt at a serious study of the relation between the method of sampling

and the accuracy of results was made by Bowley and is described in his

report to the International Statistical Institute already mentioned. The

main results of his study are as follows.

Random sampling is called unrestricted if at each drawing each of the

elements forming the population studied has the same chance of being

drawn. To illustrate this idea I shall point out that, if the population is

formed by the inhabitants of 300 cities and if the unit of sampling is repre-

sented by a block, then unrestricted sampling combined with bad luck can

produce a sample composed of blocks from just one city with the complete

omission of other cities. However this is extremely unlikely.

More accurate results could be obtained by what Bowley calls stratified

sampling and what I call stratified proportional sampling. This consists

in a twofold subdivision of the population studied. First, we divide it

into a convenient number of larger parts, called strata. For example, a
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stratum may be a city or a large section of a city. Next, each stratum is

divided into units of sampling. If you have decided to work with a sample

of one-twelfth of the population, then from each stratum separately you

select at random one-twelfth of its units. This makes it impossible for the

sample to be devoid of units representative of larger sections of the popu-

lation studied.

When we divide the population into strata, we should remember that

the more homogeneous the single strata, the better will be the effect of

stratification. In practically every city certain sections are easy to distin-

guish as those inhabited by the well-to-do, those of poorer people, shopping

districts and industrial areas. In order to achieve better accuracy, each

of these sections should be treated as a separate stratum.

However, homogeneity of a stratum does not necessarily mean equality

or similarity of all people inhabiting this stratum. In fact, homogeneity

of a stratum or of a population means a comparative similarity of the units

of sampling, rather than of the individuals forming the units. If the popu-

lation of a town is composed of representatives of ten different races, each

in the same proportion, then we would say, probably, that this population

is very heterogeneous from the racial point of view. However, from the

point of view of sampling, this population would be ideally homogeneous

if it happened that the racial composition of each of its sampling units is

exactly the same as that of the whole population. Thus one sees that the

internal heterogeneity of sampling units goes with an external homogeneity

of these units within the population. This is a general rule.

From this it follows that the choice of sampling units of a fixed size is

not indifferent from the point of view of the accuracy of an investigation

by sample. Dr. Frederick F. Stephan tells me that an investigation has

shown the existence of a greater similarity between the inhabitants of two

sides of one street than between those of opposite sides of the same block.

Hence, if one contemplates dividing the population alternatively into units

of sampling composed of the inhabitants of the two sides of sections of

single streets or of the two sides of single blocks, the latter method would

give more homogeneous units and therefore greater accuracy of sampling.

Frequently, the gain in accuracy resulting from stratification is consider-

able, but it is possible to go further than Bowley advised. A cursory glance

at the situation suggests that the rule of selecting randomly the same propor-

tion of units out of each stratum may not be the best procedure. You

can not expect that all the strata will be equally homogeneous internally.

To make the situation clear, suppose that one of the strata, A, is ideally

homogeneous, while another, B, is fairly heterogeneous. Then, in order

to know all about the stratum A, it is sufficient to take a sample of only one

unit. On the other hand, an accurate estimate of the properties of B would
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require a sample of considerable size. If we decide to sample both A and B

in proportion to their sizes (= the number of elements of sampling they

contain), then we shall "oversample" A and "undersample" B. This intui-

tive reasoning is fully supported by the theory I developed in my article

of 1934, already quoted.

After this somewhat general discussion, let me enter into a few details.

Consider a population, say n, divided into a certain number s of strata,

say 7ti, 7T2, • .', wi, • • •, tr,. Further, assume that the ith stratum contains

Mi units of sampling, numbered from 1 to Mi, and let

wii, wi2, •••, uij, •••, uiMi (1)

be the values of a certain numerical characteristic U of these units. Our

problem is to estimate the grand average U.. referring to the whole popula-

tion n. In other words, if M0 stands for the total number of units of sampling

in the whole population,

s

M0 = £ Mi, (2)

then

i=i

Mi

U- . = i~ Z Z wi; = 4- £ M&i-, 0)

M0 ,_! ;==1 M0 i=i

where wi. denotes the average value of the characteristic U relating to the

zth stratum.

While the general situation is being considered, it is convenient to have in

mind one or two specific examples. Thus, the purpose of a certain sampling

survey may be to establish the total number of unemployed in a given area A

of the country. In this case the area A may be divided into s sections repre-

senting strata. Each stratum may be sub-divided into a number of convenient

sampling units, e.g., blocks or merely squares on the map. The symbol u,y

will denote the number of unemployed inhabiting the jth block of the ith

stratum. Once we have estimated the grand average U.. of the number of

unemployed per block, it is a simple matter, if we know the number of blocks,

to estimate the total number of unemployed in the whole area A.

Alternatively, the purpose of the sampling survey may be to estimate

the average expenditure on housing (or any other item) per family of

unemployed inhabiting the area A. This problem is a little more compli-

cated because it splits into two: (1) to estimate the total expenditure on

housing of all the unemployed and (2) to estimate the total number of

families of unemployed. Thus, actually, we have a combination of two

related problems but I intend to discuss in detail only a single problem.

In this case it would be the problem of estimating the average expenditure
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on housing of unemployed families per one unit of sampling. Here utl

would mean the combined expenditure on housing of families of unemployed

that inhabit the ;th block of the ith stratum. If the total number of

unemployed is known or if it is estimated by the same inquiry, then the

knowledge of the average per block of expenditures on housing will provide

the requisite average per family.

Returning to the general theoretical case, denote by m,. the number of units

which we intend to select from the ith stratum for i = 1,2, • • •, s, to form a

sample on which to base an estimate of U... Denote by X,y the value of the

characteristic U to be observed in the jth unit of sampling selected from the

ith stratum. Before the sample is actually drawn, the exact values of Xa,

•^t2, • * •, Ximi are unknown and any one of the numbers (1) may appear as

the value of Xa, any one of these numbers may appear as the value of X,2,

etc. In fact, the symbols Xa, Xi2, •••, Ximi may represent any one of the

many combinations of m,. out of the Af,. numbers (1). Before the sample is

drawn, the Xi/s are random variables.

Let

xt. - — £ Xti. (4)

Then the best linear unbiased estimate6 of the grand average U.. is

X..--j-i.MiXi.. (5)

It is customary to measure the precision of this estimate by the value of

its variance, say a2. The smaller the variance is, the better the precision.

The theoretical problem before us is to determine the best way of using

the funds available for the survey in order to minimize the variance a2.

The first solution of this problem is contained in my article already quoted.

However, this solution applies to the special case where the cost of sampling

or, more precisely, the average cost per unit of sampling is the same in all

the s strata. This condition is frequently satisfied. In some cases, how-

ever, when certain of the strata are urban and others are rural, the average

cost of sampling a unit may vary considerably from stratum to stratum.

Since the method of determining the stratification which will be optimum

in the use of sampling funds is exactly the same whether the average cost

is constant or not, we shall consider the more general case.

Assume then that the total expenditure on the survey is fixed and is

6 The term "best linear unbiased estimate" is very intuitive and familiar to many.

statisticians. Details of the definition and some theory may be found in the excellent

little book by F. N. David: Probability Theory for Statistical Methods. Cambridge

University Press, 1949, 230 pp.
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equal to C dollars. Further let ct represent the average cost per unit of

sampling in the ith stratum. Then the numbers m<, i = 1, 2, •••, s, of

units to be selected from the whole population n must satisfy the condition

wi1ci + m2c2 H— • + mfii H f- m,c, = C. (6)

Our problem is to determine the numbers mi so as to satisfy (6) and

so as to minimize the variance <r2. The value of <r2 corresponding to any

fixed system of the m< is obtained from the formula

1 * Mi - m,. „

<r2 = t^ZM<-: V, (7)

where

i M<

<n2 = - r E («« - «i)2 (8)

M< - 1 J=i

represents the internal variability within the ith stratum. Formula (7)

must be familiar7 to many of you so I shall not bother you with its proof.

However formula (7) is not convenient for our purposes since it does not

immediately bring out the effect of choosing this or that system of values

of the m<( which determines the stratification of the sample. For this reason

we shall rewrite formula (7) in an alternative form. This is obtained by

using the familiar identity applicable to any numbers «i, a2, •••,«, without

any restriction and to any "weights" wu w2, • • •, w„ provided the sum of

the weights is different from zero. The identity in question is

J2 wiai2 = a.2 2 wi + Z «>f(«.• - a.)2 (9)

where

X wiai

t=l

(10)

Wi

is the weighted mean of the a's.

Returning to formula (7), we split the right hand side into two parts

of which only the first depends on the m<,

2_.2

Ma2 U_i m,

•

i=i

(ID

Now consider the first sum within the curved brackets. Multiply and

divide the ith term of this sum by the product m^ and apply formula (9),

7 This formula is deduced in detail in the book by F. N. David, already quoted.
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letting rriici play the role of the weights wt and the quotients

—T (12)

the role of the arbitrary numbers a,. Remembering condition (6) we have

. MW ' ( Mm \3

2^ = 2-w.M 7=)

,=i rrn ,_i \mi"Vci/

- C^2 + Y. m* ( —-j= -A). (13)

,=i \miVci /

where

A = - 2^mici[ /=)

A .=i \miVci/

l< 1=i

is the weighted mean of the quotients

Mi9i

(14)

iVci

m,

and appears to be a fixed number, independent of the wi,.. Substituting (13)

into (11), we obtain the desired formula for the variance a2,

a2 = -L \ca2 + ± mot (^= -a)2-± M^2

.Mo I i=i \miVci / ,=i J

(15)

In virtue of (14) only the second term in the curved brackets of (15)

depends on the numbers mi which determine the stratification of the sample.

This term is a weighted sum of squares of differences between the quotients

Midi

mi\/ci

and their weighted mean A. It follows that, in order to minimize <r3, it is

both necessary and sufficient to ascribe values, say m*, to the mi such that

for each i

- ~ Z MjcjVcj = A.

(16)

mi*y/ci C /_i

This implies that the optimum stratification of the sample is determined by
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C Mi<n

Mi* = — —/=. i = 1, 2, • • •, s. (17)

3=i

Note added in proof: A result equivalent to formula (17) is contained in the book,

Some Theory of Sampling, by William Edwards Deming (John Wiley and Sons, New

York, 1950), which appeared between the time the above lines were written and the

reading of the proofs. However, Deming's method of obtaining the result is different

from the one used here.

It is seen that the numbers m* so determined automatically satisfy con-

dition (6) which states that the total cost of sampling must be C.

In practice it will be impossible to satisfy formula (17) exactly because

the numbers m* must be integers while ordinarily the right hand side

of (17) is an irrational number. However, this difficulty is trivial and

the optimum stratification of the sample may be taken as the system of

s integer numbers closest to the values of the right hand side of (17) for

i = 1, 2, •••,», or just exceeding them. With this stratification, we may

ignore the middle term in (15) and write, say,

(with a very good approximation) as the minimum variance of the estimate

of U.. attainable with the optimum stratification of the sample.

Returning to formula (17), you will notice that, roughly speaking, in

order to attain the greatest benefit from a given stratification of the popu-

lation, you should sample more heavily the strata which are more variable

and also the strata in which sampling is less expensive.

In order to see the effect of sampling proportionately to the sizes Mt of

the strata, put m< = fcM< where k stands for the factor of proportionality.

This factor is determined from the condition that the total cost of sampling

must be C,

so that

E

rrijcj =

fcZ

MjCj =

C

3=i

3-i

C

rrn ..

= kMi

= Mi

3-i

*i

(19)

(20)

Denoting by <r2prop the variance of the estimate X.. corresponding to the

proportional system of sampling and using (15) and (18), we have
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■u - **+^ *V £ MiCi (.% - B) • (21)

where B stands for the weighted mean of the quotients c,/Vc,-,

1 * <T,- 4C

B = Z M,Ci ^= = (22)

The importance of the disadvantage of proportional sampling when com-

pared to the optimum depends, then, on the variability of the quotients

<n/yfci- If the population sampled contains the whole of a geographic

area one may expect that <n will be larger in the urban districts than in the

rural. On the contrary, one may expect the values of the cf, on account

of the cost of travel, to be smaller in the cities than in the country. Thus,

both factors considered are likely to contribute to the variation of the

quotients a4/\/ci. As a result, it seems probable that, in order to attain

the precision in the estimate which is best within the limits of funds avail-

able, the rural areas should be sampled less heavily than the cities.

Frequently one hears the assertion that, whatever way one stratifies a

population, proportional sampling will give results which are always more

precise than an unrestrictedly random sample of equal size. It is important

to remember that this assertion is false. To show this, let us consider the

simplest case where the cost of sampling per unit is exactly the same in

all parts of the population.

If we ignore the stratification of the population II and base the estimate of

one grand mean U.. on an unrestrictedly random sample of mo units drawn

from II, then the variance of the estimate, say <ru2 will be represented by just

the term similar to the general term in (7), namely,

m0M0(M0 - 1) i=1 i=1

By adding and subtracting u,-. within the parenthesis and then expanding

the square, expression (23) reduces to

M0- mo

aU =

m0Mo(M0 - 1)

In the following it will be convenient to use the symbols a and (a2) to denote,

respectively, the weighted averages

*=^rZ Mm (25)

Z Miim. - u..)2 + J2(Mi- iw\

>'—1 i=i J

(24)
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and

(?) - -J- £ Mv?. (26)

Then (24) can be rewritten as

M o - mo

»«2 =

£ *,•(«i. - ^.)2 + M0(<r2) - £ <r,.2l.

i=i i=i J

m0M0(M0 - 1) Li=i

If Ci = c2 = • • • = c„ the formula for er2opt simplifies and becomes

(27)

<r2opt = — (*)2 ~ rj- (<r2). (28)

m0 M0

Therefore,

M0 - m0 *

<r»2 - <r2opt —— £ Mi(ui. - U..)2

moM0(M0 - 1) ,=i

M02 -mo — 1 M0-mo *

H (O (*) £ <r» • (29)

7WoM0(M0 - 1) m0 m0Mo(M0 - 1) ,_i

Using formula (9), we may write

(*)2 = ? - r^r £ M..fo - a)2. (30)

M0 i=i

On substituting this expression into (29) and rearranging, we obtain

M0 - m0 * 2

m0Mo(M0 - 1) i=i

+-^ t *h - *>* + *•--„ r? - £ J • (3.)

»»oMo »=i WoM0(M0 - 1) L ,=i J

This is an important formula. It indicates the methods of stratification

of the population for which an optimally stratified sample will yield the

best results. Also, this same formula indicates how even an optimum

stratified sample may fail. The latter circumstance will certainly occur

if the stratification of the population is so unlucky that the means of the

strata and also the internal variabilities of the strata are all equal. Then

we have

ui. = u2. =•••=«,. = V'.. (32)

and

«ri = ff2 =...*= a» = ff. (33)

In this case,

M0 - mo

°u2 - <r2opt - - (• - 1) —ttttt^-t: (*)2 (34)

m0M0(Mo - 1)
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and it appears that even the optimally stratified sample will give less

precise results than the unrestrictedly random sample. It is true that, in

most cases, the value of (34) will be negligible. Also, it is most improbable

that, with reasonable effort at good stratification, the equalities (32) and

(33) will be satisfied, even approximately.

Formula (31) indicates that for stratification to be successful when com-

pared with unrestrictedly random sampling, it is necessary to make the

particular strata as different as possible (i) with respect to the averages v*.

and (ii) with respect to their internal variability as measured by the <rt2.

You will notice that, while these results are interesting theoretically,

there is considerable difficulty in applying them in practice. The optimum

stratification of a sample depends (1) on the sizes of the strata as repre-

sented by the numbers M4 of sampling units in the ith stratum; (2) on the

internal variability a? of the tth stratum and (3) on the average cost c4

per unit of sampling in the ith stratum. Since the choice of the units of

sampling is at our disposal, the numbers Mt are likely to be known exactly.

This is not so for the values of at and, probably, not so for the values of ct.

If we knew the numbers <r<2, we would probably know the numbers m.

and then there would be no need of sampling. It follows that in no practical

case is there an exact and immediate application of the formulas I have

given. However, in this respect our situation is no worse than it is in any

other attempt to apply mathematical results in practice. In every case,

the theory applies only approximately to the situation studied and the data

substituted into the mathematical formulas are not exact values of the

variables concerned, but only approximations. Thus, if the exact values

of <r4 are not available, there are ways and means to estimate them approxi-

mately. One typical situation occurs when a particular kind of survey is

repeated year after year. In this case last year's sample may be used to

estimate the values of m for the next year's survey. The theory behind

this procedure is that, while the average level of a given characteristic

changes considerably from one year to another, the internal variability of

the particular strata is much less unstable and, in particular, a stratum

that appears more variable than the others during one year is also more

variable the next.

Undoubtedly, there are cases where no information is available about

the internal variability of the strata. Then, the best you can do is to use

a part of the funds available to conduct a preliminary inquiry which,

incidentally, will be helpful for training enumerators. The size of this

preliminary inquiry may be very moderate. Out of each of the strata a

small number of units of sampling, say 20, are selected at random and the

values of the relevant characteristic U are established. Then these values

are used to estimate the within strata variances cr?. Finally, the estimates
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of the variances a? are used to determine the optimum stratification of the

sample to be drawn for the main part of the survey.

The situation with the cost ct per unit of sampling is similar. The exact

values of the numbers ct must remain unknown until the books are closed

on the survey, but more or less accurate estimates are not difficult to obtain,

especially if the same population has been sampled repeatedly. A closer

analysis of previous surveys will probably show that within a given stratum

the total cost of sampling increases somewhat more slowly than in direct

proportion to the number of units selected for the sample. If this is so,

the institution concerned will do well to establish for each of the strata a

schedule of the following kind: if the number of units sampled is between

20 and 30 say, then the cost per unit will be approximately so much; if the

number of units sampled is between 30 and 40, then the cost per unit will

be something else; etc. Figures of this kind could then be used to produce

tentative values at first and improved values later of the m* according to

formula (17).

It is useful to plan the work so that, by the end of the survey, not only

the preliminary sampling but also all the data collected could be used to

obtain better estimates of the ct. Additional computation would then show

whether or not the stratification of the sample which was actually made

was far from optimum, how much accuracy was lost and whether or not it

was worthwhile to try to improve on proportional sampling. Naturally, if

data are available, such computations should be made before determining

the scheme of sampling.

Question by Mr. Stock: If you were measuring a number of character-

istics, to which one would you tie the m<?

Answer: I welcome this question. It is true that a sizeable inquiry is

never planned in order to determine a single mean. On the contrary, we

are always interested in a number of characteristics of the population

studied and we must make a choice between them. In some cases there

may be a characteristic of the population which is overwhelmingly more

important than the others and then the choice is easy. In other cases

there is a group of several characteristics about equally important, and

then the situation is more complicated and may be satisfactorily resolved

only after some study. Let me illustrate this point on a particular survey

conducted by the Institute for Social Problems in which I took part and

which brought me into contact with problems of sampling human popu-

lations.

The survey was undertaken in connection with a reform of the Polish

system of social insurance and was meant to provide a basis for deter-

mining the contributions payable by workers and by employers. For this

purpose it was necessary to estimate the total number of workers subject
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to insurance, their age distribution, family status, etc. All this information

was available in the data of the 1931 general census of Poland. Unfortu-

nately, however, a complete tabulation of the census was not expected for

some years to come and the actuarial computations had to be based on a

sample taken from the original census records. Thus we were faced with

the problem of sampling, not the population of living persons, but the census

data.

The whole of Poland was divided into 26 strata. The subdivision was

made taking into account both the convenience of sampling and the general

principle that the strata internally should be as uniform as possible. The

way in which the data were stored enforced the adoption of the enumeration

district as the unit of sampling.

Although we intended to study many characteristics of the population,

we agreed to consider the following six as the most important:

x = total sum at risk connected with the sickness insurance of em-

ployed males, aged 20-64.

y = total number of employed males.

z = total number of employed males, aged 20-64.

u = total number of employed males, aged above 64.

v = total number of employed females.

w = total number of insurable population.

Since no precise information was available beforehand about the internal

variability of the individual strata, it was necessary to resort to a prelimi-

nary inquiry. Table I, compiled from the data in my Polish publication

quoted, gives each of the strata, the numbers Mi of elements of sampling

and the estimates of the numbers aj computed for each of the six charac-

teristics x, y, z, u, v, w.

When following the columns of the estimated standard deviations within

the individual strata, you will hardly fail to notice that the standard

deviations of the six characteristics are positively correlated. Consider, for

example, the last four strata. Although no strict regularity exists, it is

obvious that frequently a stratum greatly variable with respect to one

characteristic is also variable with respect to the others. This empirical

fact has a theoretical explanation and is connected with the circumstance

that the characteristics of the particular units of sampling are usually cor-

related. This correlation may be positive or negative, but the resulting

correlation between the corresponding <n is always positive. The corre-

lation coefficients between the estimates of <n for w on the one hand and

for x, y, z, u, v on the other, are given in Table II.

Thus if we stratify the sample so that optimum conditions for one of the

characteristics is approached, then as a result of this correlation, we are
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Table I

Sizes of strata and their internal variability with respect to six important characteristics

Stratum

Size of

Estimates of internal variability of strata

in terms of the ai

No.

stratum

Mi

i

X

y

z

u

V

w

1

2,041

.83

16

14

1.1

5.9

52

2

1,185

.95

20

17

2.8

8.2

50

3

3,032

1.66

25

23

2.5

9.6

81

4

371

.97

11

10

1.6

8.2

37

5

249

1.03

14

12

1.6

9.4

36

6

681

.84

19

16

1.4

13.9

68

7

3,432

.48

16

15

1.0

3.2

54

8

801

.79

17

16

.7

5.4

45

9

2,196

1.16

21

18

2.8

12.9

66

10

4,079

1.62

23

21

1.0

9.8

63

11

2,952

.49

9

7

3.0

9.3

20

12

1,123

.83

10

9

.4

3.5

16

13

1,516

1.73

15

12

2.5

12.2

28

14

1,990

1.04

21

18

1.6

20.5

88

15

998

1.88

21

19

2.1

7.6

72

16

762

.62

10

8

1.5

10.1

. 21

17

2,867

.57

11

10

1.2

9.3

34

18

443

.77

11

10

1.9

16.1

26

19

2,385

1.37

8

11

1.3

8.0

34

20

4,326

.51

12

10

1.2

8.7

27

21

2,985

.36

7

7

1.4

8.8

38

22

1,243

.65

12

9

1.4

9.3

76

23

29,885

.48

8

7

.5

5.3

28

24

18,636

.16

8

6

.9

2.2

21

25

10,906

1.29

35

31

1.0

9.2

86

26

22,299

.27

6

4

.3

6.5

20

Total

123,383

Table II

Coefficients of correlation between the estimates of ai for w and those for x, y, z, u, v

Characteristic

X

y

z

u

V

Correlation coefficient

.512

.807

.799

.212

.363
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likely to do reasonably well for the others. In this particular inquiry of

the Institute for Social Problems, it was considered that the total number

of insurable workers was the most important characteristic and the strati-

fication of the sample was adjusted in accordance with the variability of wi.

Table I illustrates other interesting details that occurred in the Polish

inquiry and may occur in others. It will be seen from the column of M4

that the sizes of the individual strata varied between very broad limits.

In fact, the smallest stratum contains only 249 units of sampling, while

the largest contains almost 30 thousand! As I have already mentioned,

great care was taken in establishing the strata to use existing information

(unfortunately, this information was predominantly qualitative in character,

without actual figures) in order to obtain strata internally as uniform as

possible. Thus, whenever a large block of the country was left undivided

as a single stratum, it was because of the prevailing belief that the block

was very uniform. In a number of cases this guess proved successful.

For example, the three very large strata, Nos. 23, 24 and 26, are rather

uniform with respect to all six characteristics studied. However, whenever

guesswork and intuition underlie our actions, surprises are unavoidable

and stratum No. 25 provided something like a shock. When the preliminary

sample of 15 units indicated such great variability in No. 25, the committee

in charge of sampling was inclined to ascribe this occurrence to a random

sampling error and to disbelieve the figures obtained. Accordingly, the

preliminary sample from stratum 25 was raised to 34 units. Naturally, the

new estimate of <r225 differed from the first, but the conclusion as to the

internal variability of this stratum remained unchanged.

In this particular case no harm was done by enlarging the preliminary

sample because, in order to complete the sampling, we had to select from

the same stratum an additional 300 units. However, the reverse situation

with strata 4, 5, and 8 did cause a certain loss in the precision of the final

sample. With respect to these strata, small in size, it was believed that,

owing to their industrialized character, they would be internally rather

heterogeneous. When the preliminary samples contradicted this expecta-

tion, the samples were markedly increased with no essential change in the

final conclusion. As a result, the estimated values of the m* for the three

strata were 5, 3 and 13, respectively. However, in the preliminary sampling

we had already selected 33 sampling units from stratum 4, 21 units from

stratum 5 and 61 units from stratum 8. Thus the preliminary inquiry

oversampled a number of strata and, in consequence, since the funds for

sampling were strictly limited, undersampling of the other strata was un-

avoidable. As a result, after the preliminary inquiry had been completed

and a substantial part of the funds had been spent, we were faced with

(seemingly) the new problem of how to apportion the balance of the money
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among the undersampled strata so as to attain the greatest accuracy of

results.

This problem is only seemingly new and is immediately reduced to the

use of the same formulae (17). It is obvious that no more sampling was

needed from strata which were already oversampled. Thus, the problem

of the best use of the money reduced itself to minimizing the total of those

terms in formula (7) which referred to the undersampled strata. Naturally,

this had to be done with the use of a new value of m0, equal to the initial

value minus the number of units of sampling already selected from the

oversampled strata.

Question by Dr. Sidney Wilcox: If you had been advising the Italian

census people, what specific advice would you have given?

Answer: I would have advised them to consider their circondari not as

units of sampling but as strata. These strata should have been subdivided

into units of sampling as small as the character of the material permitted

—parishes, streets, single houses, whatever was possible. As a matter of

fact, I remember seeing a footnote in Gini and Galvani's paper in which

they themselves suggest that probably their results would have been more

satisfactory if, instead of sampling circondari, they had sampled parishes.

In this, of course, they are perfectly correct.

There is a special difficulty in carrying out an inquiry based on a random

sample, which seems to be worth mentioning. This is psychological in

nature. Generally we do not rely on random sampling. Intuitively, we

are inclined to think that it is not wise to rely on chance if there is any

knowledge available to guide our steps. I have seen many instances

where a feeling similar to this has made it difficult to reach a decision on

how an inquiry should be carried out. I remember very well the doubts

that I myself had. "That's all right in theory," I thought, "but how would

this random sampling work in practice?" Then a great discovery satisfied

me how to make up my mind; and since that discovery has worked well

with other people, I shall mention it to you. It consists in a simple rule:

try and see. As far as our intuitive feeling against some theoretical result

is concerned, there is nothing like an experiment. In the case of a planned

inquiry by sampling, and the question of how to sample, I would take

some 1000 sheets from the data, consider them as a sampled population

and perform on them in detail all the steps of the several alternative

methods of sampling that are contemplated. But I must add two warnings.

(a) The population in this experimental sampling, like the populations

we study in practice, must be sufficiently heterogeneous.

(b) The size of the random sample you draw in experimental study must

contain a sufficient number of units, say 80 or 100.
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I am certain that a few trials of this sort will appeal to your intuition

and will give you a comfortable feeling of safety in random sampling, in

spite of the fact that in sampling randomly you sometimes ignore knowledge

of certain details. But you must remember that in following the indications

of the theory you make use of some other kind of knowledge, that of mathe-

matical statistics.

Question by Dr. Sidney Wilcox: I would like to ask a question that

is somewhat related to this matter of drawing the sample. It is fairly

common practice to take a list of the elements of sampling and to start

with one that is selected by some device or other and then to take every

tenth or twentieth on down the list in order to form the sample. This

plan is often used instead of setting up a system of random numbers or

drawing numbers at random and then selecting the sample according to

the model or game of chance. Are there any advantages or disadvantages

that one should bear in mind when making use of the device of taking

every tenth name on the list, every tenth family, house or district?

Answeb: I think there is a definite advantage in using a mechanical

process of random sampling throughout; that is to say, not taking every

tenth unit as listed. Sometimes nothing will be improved and then your

tenth or twentieth house will be as good. But there is the possibility, espe-

cially in new and properly planned towns, that if you take every twentieth

or fifteenth house, you will be synchronized with something very essential

in the town itself. I know of one small inquiry where they took a sample

of houses in a few villages. As the houses were numbered, they decided

to take every fifth or every tenth, and hoped to obtain a very good sample.

But what they obtained was something very surprising. After going back

to the sampled villages, they found that house No. 1 was always the one

belonging to the squire and this disturbed the sample. In new towns it is

likely that every block will have the same number of houses. Therefore,

if you take every fifth house, you may either omit corners or systematically

include all of them, and thus you may introduce a considerable bias in the

sample.

It is essential to be clear about the exact nature of the procedure sug-

gested. The process is this. We take the first ten units of sampling listed

and select one of them at random. Let x be its order number. Then to

form the sample we take the units numbered x, x + 10, x + 20, • • •, etc.

It will be seen that this procedure is equivalent to dividing the population

to be sampled into 10 parts,

1st part, sampling units No. 1, 11, 21, 31,

2nd " " " " 2, 12, 22, 32, • • •
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3rd part, sampling units No. 3, 13, 23, 33,

10th " " " "10,20,30,40, •••.

Then we treat these parts as units of sampling and take only one of them

to form a sample.

Obviously, if we proceed in this way we do not rely on the theory of

probability but on good luck, with the hope that the ten parts into which

the whole population is divided are very similar. This will frequently be

the case, but there are obvious dangers. I recommend that one rely on

chance as governed by the empirical law of big numbers, but I do not

recommend that one rely on good luck.

As a matter of fact, there are no special difficulties in sampling randomly.

There is a very useful little book of Tippett's Random Sampling Numbers 8

which may be recommended for the purpose. If your sampling units are

listed and numbered in order, to take a random sample of them, you simply

open the book and read in turn a sufficient amount of numbers. Whenever

the same number appears twice, you simply ignore it. Also, you ignore

all numbers exceeding the total of your sampling units.

Question by Dr. Lang: I do not see how this system can be applied to

names that are listed alphabetically.

Answer: Before using Tippett's Random Sampling Numbers you will

have to number all your names.

In regard to the question just discussed, it may be useful to mention

that in many cases every tenth item will give as good a sample as the

8L. H. C. Tippett: "Random Sampling Numbers," Tracts for Computers, No. XV,

Cambridge University Press, 1927, viii + 26 pp.

See also two newer tables of random numbers: R. A. Fisher and Frank Yates: Sta-

tistical Tables for Biological, Agricultural and Medical Research, Oliver and Boyd, Lon-

don, 1938, 90 pp. M. G. Kendall and B. Babington Smith: "Tables of Random Sam-

pling Numbers," Tracts for Computers, No. XXIV, Cambridge University Press, 1939,

x + 60 pp.

In recent times, with the advent of high speed calculators capable of producing rap-

idly great quantities of "random numbers," and with the increased use of punch card

machines, tables of random numbers have given way to sets of random numbers

punched on cards. A set of a million or so random numbers on cards should be con-

sidered a regular part of the equipment of every modern institution engaged in sam-

pling surveys.

The words "random numbers" are placed in quotation marks. It is hoped that the

reader of this book will realize that, strictly speaking, no such thing as a "random

number" or a "set of random numbers" can actually exist. What can, and actually

does exist is a method of producing numbers imitating successfully the concept of inde-

pendent sampling from a uniformly distributed population.
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application of Tippett's numbers. Other methods may be used also. It is

very difficult to give a general rule for distinguishing between reasonable

precautions to insure randomness and attempts to "split hairs." Here the

research worker must acquire experience and use his own judgment. It

must be emphasized, however, that the use of random numbers does not

present any difficulty, and that their use puts you on the safe side.

Question by Mr. Kantor: Suppose that you have to sample the workers

in various industries in several states or other geographical areas. You

do not have any record of the unemployed, and you want a sample that

will give you the percentage of unemployed in each industry for each of

the areas. The reason for the different areas is that there may be economic

factors that affect the unemployment rate in an area where there is a small

part of the industry as contrasted with the area where there is a major

center of it or where there is diversified or unified industry. How can one

go about getting a sample that would give results equally accurate for each

industry within each district?

Answer: There is no particular difficulty in approaching the ideal of

equally accurate estimates for different areas concerning the same industry

but it may be impossible to attain in addition to this a similar equality in

accuracy for all industries. The situation you describe is more complicated

than the ones we have considered. The different areas you mention, let

us call them partial populations, must be considered separately.

In particular, each partial population must be stratified. If the internal

variability of each stratum is known or can be estimated, the application

of formula (17) will determine the optimum stratification of the sample

to be taken from each partial population. Then the optimum variance of

the sample mean will become a function of the total number of elements

which will be selected from any given partial population. The problem of

allocating the available funds to particular partial populations so as to

insure the same precision for each will reduce to something very similar to

that described above and I am sure will present no new difficulties.

Question by Mr. Kantor: In attempting to get an estimate of the

variability that you are going to use in deciding what proportion to draw,

you will have to take a test count in each of your areas; you have the

count scattered over a number of characteristics; it is no longer one charac-

teristic that you measure. You would have to get a test drawing for a

number of industries in each of your areas and then compute actual

unemployment rates. Isn't that the only way in which you can proceed

with many industries? It seems to me that you have to take a full count.

Answer: I do not think so. The preliminary inquiry designed to esti-

mate the variability of the strata may be very small in size. Dr. Sukhatme
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investigated this question 9 and found that 20-30 units of sampling out of

each stratum would be plenty. Indeed he suggests as few as 15. Also it is

not necessary to make a separate preliminary inquiry for each industry.

You make one such inquiry for an area and use it to estimate aj(i) for

each of the industries in turn. Then, substitute your estimate of the true

(7j(i) in formula (17), separately for each industry. You will see that this

formula will give more or less similar results for all industries. Alterna-

tively, you may adjust the proportions of sampling to some single character

treated as basic. I would choose for this the total number of workers

within the sampling unit since it is likely to be highly correlated with the

numbers of unemployed.

Question by Mr. Kantor: In industry, we find that there are very great

differences in the proportion of unemployed, depending on the production

rate of the industry to which the workers are attached. During a depres-

sion, the production of goods for use in further production declines very

rapidly, but the production of articles made for general consumption

declines only slightly; an area devoted principally to the former type of

production will have very high unemployment and an area devoted largely

to the latter type of production will have small unemployment. Is this

the variability that we can test by drawing a small preliminary sample?

Answer: The variability of which you speak does not cause any trouble

since this is a variability between strata or perhaps between partial popu-

lations. I presume that the distribution of industries over the country is

more or less known and that, when stratifying, you will be able to distin-

guish areas differing in the general character of the prevailing industries.

If you look closely into my formulas, you will notice that they depend

upon the variability within the partial population and, more particularly,

within the strata. Denote by w the number of workers within a unit of

sampling, and by x the number unemployed. If you take one particular

stratum and study the units of sampling, you may find a picture something

like this:

etc.

Values of w

100

150

35

10

200

Values of x

10

13

1

2

25

and you will have no difficulty in noticing that x and w are correlated.

Because of this correlation, the stratification of the sample which is

optimum for w will be reasonably good for x. Something of this sort

actually happened in an inquiry in Poland.

9 P. V. Sukhatme: "Contribution to the theory of the representative method." Jr.

Roy. Soc. Stat. Supplement, Vol. 2 (1935), pp. 253-268.
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The plan to take one basic character as a unit has the advantage that

the preliminary inquiry may be very inexpensive and yet satisfactory. The

enumerators could be asked to establish only the number of workers inhabit-

ing the units of sampling, a task which takes but very little time and

effort. But also this procedure has the definite disadvantage that, if you

work with the basic character alone, the data collected during the prelimi-

nary inquiry cannot be included in the main one. Therefore, probably

I would carry out the preliminary exactly as the main one is to be made,

the only difference being one of size. I would estimate <n separately for

each industry and substitute it into formula (17). Then I would see what

happens and what would be the accuracies of the average that I would

obtain by this or that system of stratifying the sample.

Question by Mr. Milton Friedman: In many cases the set of character-

istics that it is desired to study includes some about which information

can be obtained with relative ease and others about which information can

be secured only through long and expensive interviews. In such cases it

may be advisable to secure information on the first set of characteristics

from a large random sample. This information may then be used to select

a smaller stratified sample from which the second type of data can be

secured. From the random sample would also be obtained weights to be

used in combining the data from the various strata of the stratified sample.

Thus, in the Study of Consumer Purchases, which is now being conducted

under the auspices of the National Resources Committee, the Bureau of

Labor Statistics, and the Bureau of Home Economics, the primary aim

is to secure information on family expenditures. The sample from which

such data are secured is, however, stratified with respect to income (as

well as other characteristics). At the same time, there are no data on the

relative frequencies of the different income classes. As a consequence, it

was necessary to obtain information on income from a random sample of

families in order to secure the weights for combining the data from the

stratified sample. In view of the extremely high costs involved in securing

the data on expenditures, and of the relatively low costs of securing the

data on incomes, it was decided to make the random sample from which

income information was obtained very much larger than the stratified

sample giving information on expenditures.

The question I should like to ask is whether or not any work has been

done that would indicate the optimum relative size of the two samples on

the assumption that the relative costs and the relevant standard deviations

are known.

Answer: As far as I know, nothing has been done on the specific question

you raise. I take it, however, that in such a case it would be necessary

to conduct two preliminary inquiries, one designed to determine the relative
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frequency of the different income classes, and the other to determine the

standard deviations for the item in which you are particularly interested,

for the different strata. The second preliminary investigation, as I have

already indicated, would need to cover only a relatively small number of

cases.

Question (Mr. Friedman's question restated by Dr. Sidney Wilcox):

For at least part of the work one step was taken in trying to get a random

sample using every nth card, starting not with the first card but with a

card which itself would be the result of accident. This was the process of

finding out for a given city what proportion of the people are wage earners

and clerical workers and what proportion are at one or another income level.

This was an inexpensive survey. Then a long laborious process had to be

followed in finding out in detail how they spent their money. The number

of families responding to the more elaborate questionnaire might have no

very close relationship to the number of families in the particular type of

occupational activity or income level. And so the question of weights

comes up. What should be the relative number that should be secured on

the random basis? Should we take every tenth family or, knowing in

advance approximately the costs of the operations and therefore how many

schedules we are going to be able to get on the expenditure basis, how

heavy a sample should we have taken on the random basis? What is the

relative size of the random sample? Of the larger sample to the smaller?

Answeb: I repeat, as far as I am aware, the question asked has not been

considered; but it is so interesting that I shall be glad to see whether or

not it can be answered by some simple method. If I succeed, I will certainly

try to publish the results.

Part 2. Theory of Friedman-Wilcox Method of Sampling

(This section is a textual reproduction of the article, "Contribution to the Theory of

Sampling Human Populations," by the present author, originally published in the

Journal of the American Statistical Association, Vol. 33 (1938), pp. 101-116. The author

is deeply indebted to the Editors of the Journal for their kind permission to reproduce

the paper.)

1. INTRODUCTION

At a Conference on Sampling Human Populations held last April at the

Department of Agriculture Graduate School in Washington, a problem was

presented by Mr. Milton Friedman and Dr. Sidney Wilcox for which I could

not offer a solution at the time. Since it seemed to be important and of gen-

eral interest, I have considered it in some detail. The purpose of this paper

is to present the results I have obtained.
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2. STATEMENT OF THE PROBLEM

I shall start by describing the problem in much the same form as it was

stated to me, without using any mathematical symbols. Then I shall for-

mulate it in mathematical terms. The reader who does not wish to follow

the mathematical processes may skip from equation (8) to the results and

examples beginning with equation (52) on page 138.

A field survey is to be undertaken to determine the average value of some

character of a population, for example, the amount of money which families

spend for food in a population of families residing in a certain district. The

collection of these data requires long interviews by specially trained enumer-

ators and, hence, the cost per family is quite high. Since the total cost of the

survey must be held within the amount appropriated for it, the data must be

secured from a small sample of the population. In view of the great varia-

bility of the character, the sample appears to be too small to yield an estimate

of the desired degree of accuracy.

Now the character is correlated with a second character which can be deter-

mined much more readily and at a low cost per family. Since a very accurate

estimate of the second character can be secured at relatively small expense,

and since for any given value of it, the variation of the original character will

be smaller than it is in the whole population, a more accurate estimate of the

original character may be obtained for the same total expenditure by arrang-

ing the sampling of the population in two steps. The first step is to secure

data, for the second character only, from a relatively large random sample of

the population in order to obtain an accurate estimate of the distribution of

this character. The second step is to divide this sample, as in stratified

sampling, into classes or strata according to the value of the second character

and to draw at random from each of the strata a small sample for the costly

intensive interviewing necessary to secure data regarding the first character.

An estimate of the first character based on these samples may be more

accurate than one based on an equally expensive sample drawn at random

without stratification. The question is to determine for a given expenditure,

the sizes of the initial sample and the subsequent samples which yield the most

accurate estimate of the first character.

Let us now enter into the details and introduce the necessary notation.

Denote by t the population studied and by X the character of its individuals

the average of which, say X, is to be estimated. This is the character the

collection of data on which is costly. Next let Y denote the second character,

on which the collection of data is cheap, and which is assumed to be corre-

lated with X. The range of variation of F in t being more or less known, we

shall divide it into s intervals, say

from Y0 to Y\, from Yi to Y2, •••, and from 7,_i to Y,. (1)
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130 MATHEMATICAL STATISTICS AND PROBABILITY

Denote by xi the part of the population t composed of the individuals for

which

r,_1gy<y,., «-1,2, •••,«); (2)

it,. will be called the ith stratum of the population t. Denote further by

Pi,P2, •••,?. (3)

the proportions of the individuals of x belonging to the strata ti, x2, • • •, x,,

respectively.

In the following we shall have to consider three different processes of sam-

pling which it is important to distinguish. The first two form the method

described by Mr. Friedman and Dr. Wilcox, which I shall further describe as

the method of double sampling. The third will serve as a standard of com-

parison of the accuracy of the method of double sampling. In order to avoid

any misunderstanding let us describe all three in detail.

The method of double sampling consists of the following steps:

(i) Out of the population x we select at random N individuals and ascertain

for them the values of the character Y. This sample will be denoted by Si.

The sample Si is meant to estimate the proportions p,..

(ii) Now we proceed to sample the strata xi and this is the second of the

sampling processes mentioned. Out of each stratum xi we select at random

rrti individuals which form a sample to be denoted by S2,i and ascertain for

each of these individuals, the value of the character X. The samples S2,i serve

to estimate the mean value of X in each of the strata xi. These estimates and

the estimates of the proportions (3) obtained previously from the sample Si,

permit us to estimate the grand mean X.

The combination of (i) and (ii) forms the method of double sampling. De-

note by mo the sum of the sizes to,. of all the samples S2,i, so that

s

mo = X) mi (4)

and by A and B the costs of ascertaining for one individual the value of X

and that of Y respectively. Finally, let C denote the total amount of money

available for the collection of data. Then the numbers to0 and N must be

subject to the restriction

Amo + BN = C. (5)

We shall consider what values of to,., to0 and N, satisfying conditions (4)

and (5), yield the greatest accuracy in estimating the mean value of X by the

method of double sampling. This accuracy will then be compared with that

attainable in the ordinary way, that is, without the application of the method

of double sampling. For this purpose we shall consider a third sampling

process by which all the funds C available are spent on selecting at random a
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number, say M, of the elements of -k and in ascertaining for each of them the

value of X. Denote this third sample by So- Its size will have to be M =

C/A. In order to get an idea of the utility of the method of double sampling

we shall compare its accuracy with that of the ordinary mean value of X

calculated from the sample S0.

3. FIRST METHOD OF APPROACH

In the present paper' we shall make no assumption as to the character

of the regression of X on Y in the population x. Denote by Xi, X2, •••, X„

the mean values of X in each of the strata. It follows that the grand mean of

X which is to be estimated is

^ = E ViXi. (6)

»—1

Further denote by at the standard deviation of X within the ith stratum.

Denote by ni the number of individuals drawn in the first sample Si which

fall within the ith stratum and introduce

n = -. (7)

N .

Let xij denote the value of X of the jth. individual drawn from the zth stratum

to form the sample <S2i,. Put

.j mi

xi = — Y, xij. (8)

mi y_i

We shall start by considering what function Ft of the observations, namely,

of the numbers (7) and of

xa, xi2, •••, ximi for i = 1, 2, • • •, s (9)

would be suitable as an estimate of (6). We shall limit our considerations to

homogeneous functions of second order, of the form

F\ = £ E E Kkuxji (i0)

i=i i=i k=i

where Xyfc is a constant coefficient. Out of all such functions we shall select

and term the best unbiased estimate of X, the one which has the following

properties:

(i) The mathematical expectation of Fi is identically equal to X.

(ii) The variance of Fi is smaller than that of any other function of the

form (10) having the property (i).

1 The same problem, under the assumption that the regression of X on Y has a certain

known form, forming the second method of approach, will be considered in a later paper.
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Denoting by S(u) the mathematical expectation of any variable u, we may

rewrite (i) in the following form.

s a mj s

6(Fi) = ZEE A,.;tS(rt.^) - £ PiXi. (11)

i=l i—1 fc=l t"=l

When calculating expectations, we shall use the assumption that the popula-

tion ir and all of its strata are so large compared to the sample drawn that the

particular drawings can be considered as mutually independent. We shall

notice further that, in spite of the fact that the samples S2,i probably will be

drawn out of the sample *Si and not directly from the strata x,., the variable

xjk is independent of r,.. This follows from the circumstance that when we

draw the first sample Si, we do so without any consideration of the values

of X. It follows that

S(r,xi*) = S(rt)S(x,*) = PiXj. (12)

Substituting (12) in (11) and rearranging, we have

E Pi ( E X, E hjk - Xi) - 0. (13)

The necessary and sufficient condition for this equality to hold good identi-

cally, that is to say, whatever the unknown proportions pi, P2, . • •, pa may

be, is that the coefficients of the p,. vanish, i.e.,

« mj

'LXj'Zl\ijk-Xi = 0 fori -1,2, •••,«. (14)

As we do not know the values of the Xj, these equalities should again hold

good identically, that is to say, whatever the values of the Xj. The equation

(14) can be rewritten in the form

t-1 mj /mi v a mj

E Xj E Xii* + Xi\ E hik - i) + E ^ E A.;* - o (is)

j=l A=l \*=1 / j=i+l 4=1

and its identical fulfillment is easily seen to require that

mj

E x»7t = 0 for any j ^ i; i, j = 1, 2, • • •, s

and (16)

mi

E ^nk = 1 for i = 1, 2, • • •, S.

k=i

Equations (16) express the necessary and sufficient conditions for the function

Fi to be unbiased, considered as an estimate of X. Obviously, there is an
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infinite number of systems of coefficients A<y* satisfying (16) and therefore an

infinity of unbiased estimates of X of the form (10). We shall now determine

the one that we agreed to call the "best," i.e., that which has the smallest

possible variance. Let us assume that the values of the A,/* are fixed some-

how satisfying the conditions (16) and calculate the variance of F\. Denoting

it by Vi we shall have, owing to (6)

Vi = S(Fi - X)2

(17)

f, 12

E (r& - PiXi)

where

, mj

ii - E £ Kkxjk (is)

is again independent of r,-. We have further

Vi = £ S {(r& - p,X,)2} + 2 £ £ S {(r& - PA) fa& - PA) I •

»—1 i=i A=i+1

(19)

But

efafc - p<X<)2 = 6[{(r< - p,)fc + p<(fc - X,)}*]

= S{(r,- - P,)V} + 2p,-8{(r,- - p,)(&2 - X<fc)i

+ Pi8S{(&- X,)2}

= S{(r,- - p,)2}S(f,-2) + p,28{(& - X,-)2} (20)

owing to the independence of £, and r, and to the fact that 8(r<) = p»-. Now

it is known that

S{(r,-p,)2} = s(rf2) - p,-2 = ^ (21)

N

with #i = 1 — p^ Since2

8{(f,-X<)2}=8(fi2)-X<2, (22)

to calculate (20) it will be sufficient to calculate 8{ (£i — X,)2} or the variance

of £,-. Applying the usual formula for the variance of a linear function of

independent variables and remembering that the variance of xjk is denoted

by a/, we have

8{(fc-X<)2} = 5>i*5>V (23)

y=i *=1

2 Owing to (16) the expectation of £,. is obviously equal to X,-.
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It follows that

V.a. / " m' \ * my

S{(r,fc - PiXi)2} = ^( E c* £ X2,7* + X,2) + P,•2 2 o./ E XV.

(24)

We may now go on and calculate the expectation of the other type of term

in (19). We have

8{(r<fe - PiXi)(rh£h - phXh)} = Zfanteh) - piphXiXh

= S(r,n)S(fc&) - piPhXiXh (25)

again owing to the independence of & and r,.. It is known that

S(r,rA) = PiPh (l - ij. (26)

Further

E E Xtf*** E E Xnwip.)' (27)

Remembering that

&(xjk) = Z> and S(x2iJfc) = «r/ + X,.2 (28)

and that the xi are assumed to be mutually independent, we have

8 my / 8 mj \ / 8 mf v

&(&&) = E «/ E x.7*W + (T,xJTl x«t) (S ^g E x*»V (29)

Until the present moment we have not used the conditions (16) for the

unbiased character of the estimate Fi. Therefore the formula for the vari-

ance Vi which we could obtain by substituting (24), (25), (26) and (29) into

(19) would be perfectly general. We shall use it in our second method of

approach. Now, however, we shall simplify (29) by substituting (16). We

have

a my

8«<60 = E 9? E Xwta* + XiXh. , (30)

}=i k=i

Now

Fx = E (p? + ^)t •? E x»» + E ^ a?

+ -E E p..p*{(^-i)E^2Ex,7*x»,.*-^^a}. (3D

iV ,=i A=t+i y—i *=i

Without attempting to simplify this expression at the present stage, let us

select the X,;* so as to minimize (31) while keeping the relations (16) satisfied.

For this purpose we will differentiate with respect to Xt;* the expression
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f = Vi - 2 £ £ a17 £ X,yt (32)

t—1 J—1 i—1

where the ay are Lagrange arbitrary multipliers, and equate the derivatives to

zero. After some rearrangement, we get the following equation:

- P«ry2{Xfy* + (N - 1) £ pAXA;*) = «,y. (33)

# A-l

Summing both sides with respect to k from zero to ray and taking into account

(16), we get

N~l 2 e . .

VfPi"i — mjaH for i ?* j

N

-P»W2{1 +(N~ l)Py} = mjexjj.

N

(34)

Substituting these results in (33), we obtain

N - 1 *

X,yt = Py - (JV - 1) 2-, PaXa,* = X•;* (say) (35)

Wy A_l

1

Xyy* = X.y* H (36)

to

Substituting in (35) the values of X^y* thus obtained, we easily get

X,y* = X.yjt = 0 fori^j*

1

hik =

(37)

Substituting these values into (10) we obtain the following expression for the

best unbiased estimate of X:

Fi - £ r,x,.. (38)

The formula for the variance, Vi, of Fi is obtained by substituting (37) in

(31)

Ft - £ {(p..2+it) -+*? *<i -12 i: wm (39)

which immediately reduces to the following form most convenient for finding

the system of values of N and the m,. that assure the greatest accuracy in

estimating X:
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Vi — (£ nVp? + p^N-i)

mo \i=i /

. ( a/^TT ^=T E c<VPta + Kl^

+ ±Jmiy

+ TT E Pi&i ~ %?. (40)

It is seen that none of the three terms in the right hand side can be negative.

There is only one term which depends directly on mi, m2, • • •, ms, namely, the

8

second, the others being dependent on m0 = J^ rrii and on N. It follows that

once N and mo are fixed in one way or another the value of Vi depends on the

mi and the value they ascribe to the second term. It is easily seen that its

minimum value is zero and that this is attained whenever for each value of

»-l, 2, ••.,«

mt = , =3.. (41)

S<r,Vpf2 + piQiN-i

Owing to the fact that the mj are integers, this ideal seldom can be attained

exactly, but it may be approached as far as possible. We shall further assume

that the m,. are selected in closest agreement with (41) and that the second

term in (40) is negligible compared with the remaining two.

We must now consider what values of m0 and N satisfying (5) are likely to

give the smallest value to the sum of only two terms in (40), say

Vi' = — (£ °i^Pi2 + PiQiN-i) +YTipi(Xi-D2. (42)

mo \i=i / N i=i

Owing to the complex structure of the first of these terms, an accurate solution

of the problem is difficult to attain. However, it is easy to get an approxi-

mate solution which will probably in most cases be sufficient.

In most cases, whenever we do not make any special assumption concern-

ing the character of the regression of X on Y, we shall probably classify the

population t into only a few strata whence it may be assumed that the propor-

tions pi will not be very small and consequently piqiN~i will be considerably

smaller than any of the p,.2. If so, then the value of the square root

\V + PiQiN-i (43)

will be very much the same as that of p,.. For example, if pt. = .1, g,. = .9

and N = 100, it is .1044 and if the value of Npt were somewhat larger, the

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

0
 1

5
:4

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

7
2

9
7

9
8

2
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



STATISTICAL PROBLEMS IN SOCIAL AND ECONOMIC RESEARCH 137

agreement would be still better. Therefore, instead of trying to minimize

(42) we may usefully start by trying to minimize, say

Vi" = — (E Pi°t) + ^ £ Pi(Xi - m

or (44)

a2 b2

to0 N

for short. Denote by vi and v2 the smallest numbers of selections into the

first and the second sample respectively, the total cost of which is the same,

so that

viB = v2A. (45)

If Too' and N' are the integer numbers minimizing (44) and satisfying (5),

then any change of these values by taking instead of them either

mo' - v2 and N' + vi

or (46)

mo' + v 2 and N' - Vi

will increase the value of (44). This means that to0' and N' satisfy the in-

equalities

a

2 b2 a2 b2 a2 b2

+ > — + —< + L (47)

mo' + v2 N' - vi mo' N' mo' - v2 N' + t>i

These inequalities reduce easily to the following ones

v2 v2

1 1 + —-

mo' a2v2 N'2 too'

Vi TOo b Vi Vi

1+— 1 - —

N' N'

showing that in order to minimize (44) while keeping (5) fixed, we have to

select m0 and iV as nearly as possible proportionately to avt2 and bVVi

respectively. Putting for a moment

mo = N-J- (49)

o \ Vi

and substituting it in (5), we get

CbVvl

N = ^ i—F= (50)

AaVv2 + BbVvi

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

0
 1

5
:4

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

7
2

9
7

9
8

2
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



138 MATHEMATICAL STATISTICS AND PROBABILITY

which gives

CaV72

"^ ~~ AaVvz + Bby/n

Using (45) and eliminating vi and v2 we may rewrite (50) and (51) in the final

form

Cb

N : 7=7^ (52)

where

and

(53)

(54)

i=i

b2 = Z Vi{Xi - X)\ (55)

Here we must remember the following circumstances:

(1) that both m0 and N are integers and therefore formulae (52) and (53)

should be calculated to the nearest integer;

(2) that a change in m0 by one unit must be compensated by a change in

N by several units;

(3) that the solutions which would be obtained by taking exact values of

(52) and (53) would minimize the value of (44) with a as given in (54), whereas

the value of the variance in (42) depends on

8

ai = Z <r,VPi2 + p^N-i (56)

i=i

instead of a.

It follows that the integers nearest to (52) and (53) may not necessarily

minimize (42), but since the difference between a and at is slight, they may be

considered as the first approximations. Frequently these first approxima-

tions will also be the accurate values.

In order to find the second approximation, we may calculate ai as in (56)

substituting N as calculated from (52) and then substitute the value obtained

into (53) to get a new value of thq. This sometimes will indicate the necessity

of increasing the original mo by unity. However, owing to the fact that both

mo and N must be integers, the real check of what values do give the minimum

is obtained simply by substituting into (42) both the first approximations to

m0 and AT and a few neighboring systems of values, e.g., mo - 1 and mo + 1

and the corresponding values of N.
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4. EXAMPLE I

It may be useful to illustrate the above theory by some simple examples.

Assume that there are only three strata, so that s = 3. Assume further the

following values of the constants involved:

Pi ™ h V2 = h Ps = i.

Xi = 1, X2 = 3, X3 = 6,

<ri = 1, 02 = 2, <r3 = 4,

4=4, B = l, C = 500.

In order to calculate the values of mo and 2V, we calculate

a = 2.25, (58)

X = 3.25, (59)

62 = 3.1875 = (1.7854)2. (60)

(57)

It follows that

and accordingly

N = 142 (to the nearest integer) (61)

mo = 89. (62)

It will be seen that the necessity of taking mo to the nearest integer permits

an increase in the value of N to 144, without exceeding the limit of expense,

500 units. Let us now see how m0 = 89 should be distributed between the

three strata. Easy calculations give

<ri VPl2 + pmN-i = .2526

<r2Vp22 + p2g2Ar_1 = 1.0035

<r3Vp32 + psfctf-1 = 1.0104

(63)

E <riVpi2 + prfiAT1 = 2.2664.

t—1

Hence, using (41) and taking the nearest integers, we get

mi = 10, m2 = 39, m3 = 40. (64)

With this system of the m,. the middle term of formula (40) would have the

value

N2

Vnf+ptqiN-1 S oiVpi2 + PUN~i ,

' ' ' ' =.0000048564. (65)

=1 x

mi m0
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The total value of Vi in (40) is found to be

Vi = .079855 (66)

and it follows that by using (64) the value of the middle term is for all practical

purposes negligible. It is interesting to compare this value with the one

which could be obtained without adjusting the numbers m,. to the variability

and the size of the strata, i.e., without using (41). Putting arbitrarily mi =

29, m2 = m3 = 30, we get

Vi = .091927. (67)

Comparing this with (66) we see that neglecting to adjust the m,. according

to formula (40) results, in this particular example, in an increase of the vari-

ance by over 15 percent, which is a considerable and unnecessary loss in

accuracy.

This is the situation if we use for m0 and N the values found as first approxi-

mations. Substituting 144 for JV in (56) and calculating a^ and then using

this value instead of a to calculate the second approximation of mo, we get

mo = 89.6783 (68)

which suggests that the best integer values of mo and N are mo = 90 and

N = 140. However, using them we obtain

Vi = .079866. (69)

Again using m0 = 88 and N = 148 we get

Vi = .079888 (70)

and it appears that the first approximation gives in fact the best possible

result, but the actual difference is negligible.

We must now see whether this result, the best that could be obtained by

the method of double sampling is actually better than what could be obtained

by spending all the money available to collect as much data on X as possible,

i.e. by drawing the unrestricted random sample *S0 (see p. 130).

The best linear estimate of X calculated from the sample S0 would be the

sample mean x. Its variance, Vo, is known to be connected with the symbols

of this paper by means of the formula

Vo = ^ {i; wi2+i: Pi(Xi -x)A. (7i)

It is easy to find that in our example

C

M = - = 125 (72)

A

and

V0 = .0755. (73)
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It follows that in this particular case the method of double sampling, even

supplemented by the optimum adjustment of the numbers of sampling, is

equivalent to a certain loss of accuracy of the final result. Taking the ratio

of the variances (73) and (66)

71

1.058 (74)

V0

we see that this loss of accuracy amounts to nearly 6 percent. This unfavor-

able result is, of course, due to the fact that the differentiation between the

strata with respect to the values of X is small compared with the variability

of the strata themselves and to the fact that the difference in the cost of

obtaining data on X and Y is comparatively small. To illustrate this point

let us consider the following examples.

5. example n

Assume that the values of the p,-, Xi and <r,- are exactly as in Example I

and put

A = 40, B = 1, C = 5000 (75)

so that the process of obtaining data on Y is now 40 times cheaper than that

on X, while the ratio of C/A is the same as formerly. It follows that Vo in

this case will be exactly the same as formerly (73), but the minimum value of

Vi will change. We shall have

mo = 111, N = 560 (76)

and, assuming that the m,- are fixed according to (41), we get finally

Vi = .05147 (77)

and it is seen that this value is exceeded by V0 by more than 46 percent!

6. EXAMPLE III

Here we shall keep the values of the p,-, the <r,-, and those of A, B and C

as in Example I but change the values of the Xi so as to increase the value of

6, namely, put

Zi = 1, X2 = 6, X3 = 11. (78)

Then

b2 = 12.5 = (3.53553)2 (79)

and

V0 = .1500. (80)

On the other hand, applying the method of double sampling and taking the

optimum system of numbers of samplings, viz.,
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mi = 8, m2 = 31, m3 = 31, m0 = 70, N = 220 (81)

we get

Fi = .1298, (82)

a gain in accuracy in comparison with (80) of about 15 percent.

7. CONCLUSIONS

(i) The examples II and III show that under favorable conditions the

method of double sampling is a very powerful tool of statistical research.

(ii) However, the advantages of methods are but rarely universal and in

certain cases, as for instance in the above example I, the direct unrestricted

sampling may be more efficient than the method of double sampling.

(iii) Without a certain previous knowledge of the properties of the popula-

tion sampled it is impossible to say which of the two methods will be more

efficient.

(iv) It is also impossible to tell in advance what the values of N, m0, and

of the m,- should be to assure the greatest accuracy of the double sampling

method.

(v) On the other hand, if certain properties of the sampled population w

are known, or can be estimated, then it is possible to estimate the values of

m0 and N and also those of the mi by which the method of double sampling

gives the greatest possible accuracy. The properties of population t needed

for this purpose are the values of the p,, <ri and X* They could be estimated

by means of a preliminary inquiry on the lines suggested by me during the

conference at the U. S. Department of Agriculture Graduate School and also

in my previous publications on sampling human populations.3 Once approxi-

mate values of the pi, tr,- and X,- are obtained, they should be substituted into

formulae (52), (53) and (41) to obtain the approximations of the optimum

values of m0, N and the m,-.

(vi) Before deciding whether to apply the method of double sampling, we

should see that the prospects are that it will give better results than the direct

unrestricted sampling of values of X.

For this purpose the approximate values of the pi, <r< and Xi should be

substituted into (40) and (71) to obtain the approximate values of variance

V\ and V0. The decision to apply the method of double sampling should be

8 J. Neyman: "An Outline of the Theory and Practice of Representative Method Applied

in Social Research." Institute for Social Problems, Warsaw, 1933. Polish with an English

Summary.

J. Neyman: "On the Two Different Aspects of the Representative Method." J.R.S.S.

1934, pp. 558-625.

See also P. V. Sukhatme: "Contribution to the Theory of the Representative Method."

Supplement to the J.R.S.S., Vol. II, 1935, pp. 253-268.
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taken only if the approximate value of Vi proves to be considerably smaller

than that of V0.

(vii) The steps described in (iii) and (iv) are possible only if some previous

knowledge of the population i r is available. This may be obtained from

various sources: from some previous experience concerning the population

t, or from a specially arranged preliminary inquiry. Such a preliminary

inquiry consists of drawing from w a relatively small unrestricted random

sample of individuals and in ascertaining for all of them the values of both

characters under consideration X and Y. The data thus obtained should be

used to estimate the pi, the <n and the Xi.

In order to exemplify the kind of previous experience which may be used

to plan future inquiries on the lines as indicated in (v) and (vi), I may men-

tion a recent extensive Study of Consumer Purchases, a Federal Works Pro-

ject administered by the Bureau of Labor Statistics, U. S. Department of

Labor and the Bureau of Home Economics, U. S. Department of Agriculture,

in cooperation with the National Resources Committee and the Central

Statistical Board.4 This inquiry was carried out by method of double sam-

pling and therefore, in the process of working out the data, both the propor-

tions pi and the means Xt. corresponding to particular strata and to many a

character X must have been estimated. Probably the values of c,. are also

available. These figures could be used as pointed out in (v) and (vi) when

planning any new inquiry concerning the same characters and the same or

some similar population.

Part 3. On a Most Powerful Method of Discovering

Statistical Regularities

(This section is based on a talk given before the members of Sigma Xi at a meeting

of the Society held in Berkeley, California, April 9, 1947.)

You must have heard the often repeated joke that there are three kinds

of lies: the polite lie, the malicious lie and statistics. The subject of my

talk tonight will be the kind of statistics that is frequently a lie although,

undoubtedly, the authors compiling such statistics do not mean any sort

of mischief. For the most part they are well meaning but ignorant of

the theory of statistics and they are the victims of their own lack of pro-

fessional education.

There are many ways of handling perfectly correct data which at first

sight seem intuitively sound but which tend to introduce into the data

extraneous regularities. These regularities, artificially introduced into the

observational material, suggest connections between the various factors

4 Jour. Am. Stat. Assoc, Vol. XXXI, 1936, p. 135, and Vol. XXXII, 1937, p. 311.
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which in fact do not exist. My purpose tonight is to describe one example

of such an analysis of statistical data. If you look through the volumes

of a statistical-economical or a statistical-sociological journal, you are very

likely to find examples of practical applications of this method.

The method in question is so powerful that by means of it one can suc-

cessfully prove that storks bring babies. Once upon a time an inquisitive

friend of mine decided to study this question empirically and thereupon

he collected some relevant data. The data are quite comprehensive and

refer to 54 different counties. The raw data which he collected are repro-

duced in Table I.

The data include the number W of women of child-bearing age (second

column of Table I, given in units of 10,000), the number S of storks in

each county (third column) and, finally, the number B of babies born

during a specified period of time (fourth column). In the beginning, my

friend had in mind a direct comparison of the numbers S and B. However,

it was pointed out to him that such a comparison is not convincing because

the counties vary in size and larger counties may be expected to have

more women, more babies and also more storks. Thus the variation in the

size of the county appeared as a disturbing factor hiding the true relation-

ship between the two quantities S and B.

In order to eliminate the disturbing influence of the size of the county,

my friend hit upon the brilliant idea of comparing, not the actual numbers

of births and the actual numbers of storks, but the birth rates on the one

hand and the "densities of storks" per 10,000 women on the other.

Thus he obtained the quantities X and Y as follows,

S B

X and Y

W W

and then he tried to compare the two quotients X and Y. Naturally, in

questions of this kind you cannot expect an absolute regularity. In par-

ticular, you cannot possibly expect that every increase in the quotient X

will always be accompanied by a proportional increase in Y. There must

be fluctuations and so you will expect to find counties with a large density

of storks and a small birth rate and vice versa. The best you can hope

for in the way of regularity is that, if you classify all 54 counties according

to the density of storks and average the corresponding birth rates, then

the averages will show a variation parallel to the variation in the density

of storks. To put it professionally: it is inconceivable that the birth rate

is a monotonic function of the density of storks and the believer in the

proficiency of these birds must be satisfied if he finds a positive correlation.

This was the attitude of my friend and he compiled Table II. I have

checked the figures in Table II and so have several other people. We found
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Table I

Do storks bring babiesf—Raw data

Women

Women

County

no.

Babies

born

County

no.

Babies

born

in

10,000s

Storks

in

10,000s

Storks

1

2

3

2

2

2

10

15

20

28

29

30

4

4

4

6

6

6

25

30

35

4

5

6

3

3

3

10

15

20

31

32

33

4

4

4

7

7

7

25

30

35

7

8

9

4

4

4

10

15

20

34

35

36

4

4

4

8

8

8

25

30

35

10

11

12

2

2

2

4

4

4

15

20

25

37

38

39

5

5

5

7

7

7

30

35

40

13

14

15

2

2

2

5

5

5

15

20

25

40

5

5

5

8

8

8

30

35

40

41

42

16

17

18

2

2

2

6

6

6

15

20

25

43

5

5

5

9

9

9

30

35

44

45

40

19

20

21

3

3

3

5

5

5

20

25

30

46

47

48

6

6

6

8

8

8

35

40

45

22

23

3

3

3

6

6

6

20

25

49

50

51

6

6

6

9

9

9

36

24

30

40

45

25

26

27

3

3

3

7

7

7

20

25

30

52

53

6

6

6

10

10

10

35

54

40

45

no mistakes in arithmetic. Furthermore, you will have no difficulty in

checking the table yourself. Among the 54 counties studied, there were

three in which there were on the average 1.33 storks per 10,000 women

of child-bearing age. The average birth rate in these counties was 6.67.
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Table II

Do storks bring babies?—Analytical presentation

Density of

Number

Average

birth

rate

Class

average

storks per

of

counties

10,000 women

1.33

3

6.67

7.12

1.40

3

7.00

1.50

6

7.08

1.60

3

7.00

1.67

6

7.50

1.75

3

7.50

9.22

1.80

3

7.00

2.00

12

10.21

2.33

3

8.33

11.67

2.50

3

10.00

3.00

6

12.50

4.00

3

15.00

Also, there were three counties with 1.40 as the density of storks and the

average birth rate for these was 7.00, and so forth down the column. An

inspection of Table II will show that the birth rate, although subject to

fluctuations, steadily increases with an increase in the density of storks.

This increase becomes even more marked if we divide all the counties into

three classes according to the density of storks: densities below 1.7, densities

between 1.7 and 2.1, densities above 2.1. The corresponding class averages

are given in the last column of the table and show a decisive increase.

My friend's conclusion was that, although there is no evidence of storks

actually bringing babies, there is overwhelming evidence that, by some

mysterious process, they influence the birth rate! I know that some of

you are skeptical and suspect that the original data of Table I were inten-

tionally falsified to produce the astounding result exhibited in Table II.

Let me assure you that these suspicions are unfounded. If anything, my

friend was extremely lucky in collecting the data. Further, he was certainly

very careful in classifying them in Table I so that it is extremely easy to

make a complete analysis without performing any arithmetic.

You will notice that all the 54 counties fall into six different groups.

It happens that the nine counties forming a group have the same number

of women, 10,000 in the first group, 20,000 in the second, etc. Proceeding

further, we notice that each group of nine counties falls into three sub-
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groups of three counties each. The subgroups are ordered according to

the number of storks. Thus, the first group of counties contains three

with 2 storks, three with 3 storks and three with 4 storks. The same

kind of thing is repeated in all other groups of counties. The counties of

the second group must have a larger area than those of the first. They

have more women and the number of storks in them varies from 4 to 6,

etc. Turning to the columns giving the total number of babies born, we

notice constant fluctuations. Thus, within the first group, in the three

counties with the same number 2 of storks, the numbers of babies born

are 10, 15 and 20. In the next subgroup of three counties there were

3 storks each and, impressed by Table II, we might expect that the num-

bers of babies, though fluctuating, will show an increase compared with

the first subgroup. However, Table I does not display an increase in the

number of babies born corresponding to an increase in storks, as long as

the number of women remains constant. This is true in the first group

of nine counties and it is also true in any other group. So long as we

consider a group of counties with the same number of women, an increase

in the number of storks does not have any effect whatsoever on the number

of babies born. We express this technically by saying that the conditional

distribution of the number of babies born, given the number of women, is

independent of the number of storks. Also, we may say that, given the

number of women, the birth rate is independent of the number of storks.

This finding appears to be contrary to the intuition of my friend who was

much aggrieved, but it coincides with your intuition and my own. Thus,

apart from a rather unusual regularity, the figures in Table I do not involve

anything unexpected.

How then can one explain the most unexpected features of Table II?

Once you start to think about it, the explanation is very easy. The

phenomenon was first noticed by Karl Pearson some fifty years ago and

was called "spurious correlation."

The variable X, representing the density of storks, is a function of two

variables S and W, say

Similarly, the birth rate Y is a function of B and W, say

Y=f2(B,W)=~

W

It happens in the present case that the two functions /i and /2 coincide

since they are both quotients with W in the denominator. However, the

coincidence of the two functions /i and /2 is not essential. The essential
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point is that these two functions depend on a common argument W and

the fluctuations of W must create simultaneous effects upon the values of

X and Y. Since W appears in the denominator of both fractions, any

"abnormal" increase in W tends to diminish both X and Y simultaneously.

Also, any "abnormal" decrease in W tends to increase both X and Y. As

a result, X and Y are positively correlated.

In another case we may be considering two functions, say

S

X = — and Z = BW,

W

where the letters S, B and W stand for some other observable variables.

You will easily guess that in this case the presence of W in both X and Z

will tend to create a negative correlation between X and Z. This corre-

lation has nothing to do with social or economic factors governing the

variation of the three variables but is simply the result of our own arith-

metic operations. These are, of course, only intuitive considerations and

the exact conclusions require some algebra.

You may be amused by computing the correlation coefficient R between

the variables X and Y. This is quite easy if we make certain simplifying

assumptions.

We shall assume that

(i) Given W, the variables S and B are independent;

(ii) S and W are correlated and the regression of S on W is linear, say

E(S \W) = A0 + AiW.

Moreover, we shall assume that the conditional variance of S given

W, say <r2s | w, is independent of W.

(iii) B and W are correlated and the regression of B on W is linear, say

E(B | W) = Co + CiW.

.. 2

M'

The conditional variance of B given W, say o.2B | w, is independent of

W.

(iv) The expectation and the variance of the reciprocal of W exist. We

shall denote them by l/Wi and a2w-i, respectively.

According to the usual definition,

E(XY) - E(X)E(Y)

R =

<TX<TY

Thus, in order to compute R, we have to compute the expectations of X,

F, X2, Y2 and XY. Easy algebra gives
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-E[A°+w'W]

Similarly,

r Ai.

Wi

And it follows that

ex2

E[°*s\w+(A0 + AiW)2l

= v"-1+w?)(s'w+Ao)+^h+Ai

= ( a w1 + ="2 ) <r s\w + A0 a ur-i.

Similarly,

Co

2?(F) = -f + C1(

and

<tk2 = ( o^w-1 + =rjj ^bi w + C0Vir->

/ o 1 \ A0Ci + AiC0

E(XY) = AoCo ( oVi + =1 ) + w + Axd

Upon substituting these results into the formula for the correlation coeffi-

cient, we obtain the final result,

R =

« b | w + C0 a jf-i

It follows that the above intuitive considerations are only partly true.

In the conditions under which the formula for R was deduced, it is neces-

sary and sufficient for the lack of correlation between X and Y that either

A0 - 0 or Co = 0 or both. If neither of these parameters is zero, then
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the correlation R is positive whenever A0 and C0 have the same sign and

negative otherwise. You will remember that A0 and C0 are the intercepts

of the regression lines of S on W and of B on W, respectively.

The above analysis of correlation was made under very simplifying

assumptions. However, you will have no difficulty in performing it in

the more general case when the regressions of S on W and of B on W are

represented by any polynomials.

The theory of spurious correlation is not a very difficult matter and, as

I have already mentioned, the phenomenon has been known for quite some

time. With all due respect to Karl Pearson, I am inclined to alter slightly

the label he invented. There is nothing spurious in the correlation between

X and Y. When A0 ^ 0 and C0 ^= 0, the correlation between these two

variables is quite real. Therefore the term "spurious correlation" seems

to miss the point. The real point of the discussion is that the computation

of the quotients X and Y is undertaken in order to study the correlation,

not between these variables themselves, but between the social, economic

or biological factors that these quotients are supposed to represent. It is

the method of study that is faulty and, if the adjective "spurious" is to

be used at all, it should be applied to the method of studying correlation

between factors of primary interest; in the present case, between the num-

ber of babies born on the one hand and the number of storks on the other.

Only these two factors are of interest. It is suspected that each may be

correlated with the third factor, the number of women. Therefore, the

appropriate method of study is to compute the partial correlation between

B and S with the influence of W eliminated. In proceeding in this fashion,

there may be specific difficulties due to the lack of linearity, etc. However,

these difficulties can hardly be decreased by using a spurious method.

In spite of the fact that the phenomenon of spurious correlation has

been known for half a century, many a practical statistician, as well as the

general public, is misled by it from time to time.

Thus we see "proofs" that the density of bars increases the frequency

of crimes. This fact is likely to be true but the argument brought in sup-

port of the assertion is faulty. In this and similar cases, there is no special

harm done to Society. But there are other cases. Not so very long ago,

I saw a detailed analysis of various problems of farm management. A

considerable amount of money and effort was expended to collect the data.

One of the conclusions reached was that, while the primary factor governing

the employment of manual labor is the size of the farm, the density of

employment increases with the increase of the proportion of the farm land

which is arable. Again, this assertion may be true but the argument is

faulty and the final tables presented in support of the assertion, quite

analogous to Table II, are entirely irrelevant.
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There are even more regrettable cases on record in which the spurious

method of studying correlation and regression was used and, moreover,

was left undetected. Some years ago a scholar was interested in the

question of whether or not railway rates were sufficient to cover expenses.

His conclusion was that passenger traffic, on the average, barely paid its

way and had fallen appreciably short at times while freight traffic, on the

average, paid the net of the railway operation. For his analysis he used

the data of Class I railroads as given in the annual volumes of Statistics

of Railways in the United States, published by the Interstate Commerce

Commission. There are somewhat less than 200 roads in Class I (185 were

itemized in the 1923 volume). He decided to correlate the total cost of

operation with the passenger and freight traffic. However, Class I railways

are very different in length, ranging from 21 miles to over 10,000, and this

variation must create correlations between the three variables considered

which are irrelevant to the main problem. In order to eliminate the dis-

turbing factor, the author used the data given under the heading "averages

per mile of road" rather than the totals for each road which are also given.

He then correlated these "averages per mile of road" which are the totals

of each variable for a given railroad divided by the length of the road.

The partial regression coefficients thus computed are expected to measure

the average additional cost to the railroads which accompanies a unit

increase in the particular service. If a partial regression coefficient is less

than the corresponding rate, then the railroads as a whole are adequately

paid for their services and make a profit. Otherwise they lose money or,

at best, break even. Figures taken from the article are reproduced in

Table III.

Table III

E = expenses per mile of railroad in $1

F = number of "1000 ton-miles" of freight traffic per mile of railroad

P = number of "1000 passenger-miles" of passenger traffic per mile of railroad

Average for all roads

Multiple regression equa-

tion, expenses being re-

garded as dependent

E

F

P

1919

1921

1922

1923

1865

1936

1858

2022

155.8

131.7

142.7

174.3

20.00

16.11

15.10

15.42

E = 6.8F + 29P + 221.3

E = 8.0F + 33P + 353.0

E = 7.9P + 30P + 279.2

E - 7.3F + 30P + 285.4
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Table IV

L = length of railroad in miles

Z " total expenses in $10,000

X - total freight traffic in 100,000 ton-miles

Y = total passenger traffic in 100,000 passenger miles

L

Z

X

Y

L

Z

X

Y

L

z

X

Y

0

100

61

535

69

100

71

535

69

100

81

535

69

100

61

535

72

100

71

535

72

100

81

535

72

100

61

535

75

100

71

535

75

100

81

535

75

100

61

550

69

100

71

550

69

100

81

550

69

100

61

550

72

100

71

550

72

100

81

550

72

100

61

550

75

100

71

550

75

100

81

550

75

100

61

565

69

100

71

565

69

100

81

565

69

100

61

565

72

100

71

565

72

100

81

565

72

100

61

565

75

100

71

565

75

100

81

565

75

500

90

615

71

500

100

615

71

500

110

615

71

500

90

615

75

500

100

615

75

500

110

615

75

500

90

615

79

500

100

615

79

500

110

615

79

500

90

650

71

500

100

650

71

500

110

650

71

500

90

650

75

500

100

650

75

500

110

650

75

500

90

650

79

500

100

650

79

500

110

650

79

500

90

685

71

500

100

685

71

500

110

685

71

500

90

685

75

500

100

685

75

500

110

685

75

500

90

685

79

500

100

685

79

500

110

685

79

1000

120

627

74

1000

130

627

74

1000

140

627

74

1000

120

627

80

1000

130

627

80

1000

140

627

80

1000

120

627

86

1000

130

627

86

1000

140

627

86

1000

120

700

74

1000

130

700

74

1000

140

700

74

1000

120

700

80

1000

130

700

80

1000

140

700

80

1000

120

700

86

1000

130

700

86

1000

140

700

86

1000

120

773

74

1000

130

773

74

1000

140

773

74

1000

120

773

80

1000

130

773

80

1000

140

773

80

1000

120

773

86

1000

130

773

86

1000

140

773

86

1500

140

700

76

1500

150

700

76

1500

160

700

76

1500

140

700

85

1500

150

700

85

1500

160

700

85

1500

140

700

94

1500

150

700

94

1500

160

700

94
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Table IV—Continued

L

Z

X

Y

L

Z

X

Y

L

Z

X

Y

1500

140

800

76

1500

150

800

76

1500

160

800

76

1500

140

800

85

1500

150

800

85

1500

160

800

85

1500

140

800

94

1500

150

800

94

1500

160

800

94

1500

140

900

76

1500

150

900

76

1500

160

900

76

1500

140

900

85

1500

150

900

85

1500

160

900

85

1500

140

900

94

1500

150

900

94

1500

160

900

94

2000

160

800

80

2000

170

800

80

2000

180

800

80

2000

160

800

90

2000

170

800

90

2000

180

800

90

2000

160

800

100

2000

170

800

100

2000

180

800

100

2000

160

900

80

2000

170

900

80

2000

180

900

80

2000

160

900

90

2000

170

900

90

2000

180

900

90

2000

160

900

100

2000

170

900

100

2000

180

900

100

2000

160

1000

80

2000

170

1000

80

2000

180

1000

80

2000

160

1000

90

2000

170

1000

90

2000

180

1000

90

2000

160

1000

100

2000

170

1000

100

2000

180

1000

100

2500

170

900

85

2500

180

900

85

2500

190

900

85

2500

170

900

95

2500

180

900

95

2500

190

900

95

2500

170

900

105

2500

180

900

105

2500

190

900

105

2500

170

1000

85

2500

180

1000

85

2500

190

1000

85

2500

170

1000

95

2500

180

1000

95

2500

190

1000

95

2500

170

1000

105

2500

180

1000

105

2500

190

1000

105

2500

170

1100

85

2500

180

1100

85

2500

190

1100

85

2500

170

1100

95

2500

180

1100

95

2500

190

1100

95

2500

170

1100

105

2500

180

1100

105

2500

190

1100

105

3000

180

1000

90

3000

190

1000

90

3000

200

1000

90

3000

180

1000

100

3000

190

1000

100

3000

200

1000

100

3000

180

1000

110

3000

190

1000

110

3000

200

1000

110

3000

180

1100

90

3000

190

1100

90

3000

200

1100

90

3000

180

1100

100

3000

190

1100

100

3000

200

1100

100

3000

180

1100

110

3000

190

1100

110

3000

200

1100

110

3000

180

1200

90

3000

190

1200

90

3000

200

1200

90

3000

180

1200

100

3000

190

1200

100

3000

200

1200

100

3000

180

1200

110

3000

190

1200

110

3000

200

1200

110
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Miss Evelyn Fix was kind enough to prepare Table IV indicating what

might have been the raw data regarding the expenditures of the railroads.

This table is analogous to Table I. The partial regression coefficients of

the same kind as appear in Table III are given in Table V. It will be seen

Table V

Z

z — - = expenses per mile of railroad in $1

Li

x = - = number of "1000 ton-miles" of freight traffic per mile of railroad

Li

Y

y = - = number of "1000 passenger-miles" of passenger traffic per mile of railroad

Li

Average for all roads (189):

2 - 1943.3

x = 132.14

y = 16.043

Multiple regression equation, expenses being

regarded as dependent:

z = 7.994a: + 32.87j/ + 359.7

that the conclusions they suggest are similar to those suggested by Table

III and entirely contrary to those drawn from the original data of Table IV.

In fact, upon inspecting this table it will be seen that, for each fixed size

of railroad, the hypothetical expenditures Z are entirely independent of

both the total freight traffic X and of the total passenger traffic Y.

The article to which I am referring met with opposition from several

authors. However, it is curious that none of the discussants thought that

the method of constructing Table III was spurious.

In broad circles of the general public, the opinion still prevails that, in

order to conduct statistical studies, one must have enough funds, a few

electric calculators and some common sense. Funds and electric calculators

are very useful and common sense is just grand. It appears, however, that

a little professional education is now and then also useful.

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

0
 1

5
:4

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

7
2

9
7

9
8

2
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



CHAPTER IV

Statistical Estimation

Part 1. Practical Problems and Various Attempts to Formulate

Their Mathematical Equivalents

(Based on a conference held in the auditorium of the Department of Agriculture, April

8, 1937, 10 a.m., Mr. Alexander Sturges presiding.)

In this conference I shall try to explain, from the modern point of view,

the practical origin of the statistical problem of estimation and some of

the early attempts at its solution. The material of the conference falls

under four headings. First, under the subtitle "Applicational Roots of the

Problem of Estimation," there will be two examples of practical problems.

This subsection is followed by two subsections under contrasting subtitles,

one on "The Classical Bayes' Approach" and the other on "The Modernized

Bayes' Approach." The last subsection is given to the somewhat contro-

versial methods advanced to circumvent the difficulties caused by the

absence of exact information regarding the a priori distributions of the

estimated parameters.

APPLICATIONAL ROOTS OF THE PROBLEM OF ESTIMATION

Practical problems of statistical estimation may be illustrated by the

following examples.

Example 1.—We are interested in a certain characteristic | of the totality

of farms in the United States. This characteristic could be evaluated

exactly if we had the necessary data regarding each and every farm. How-

ever, the time needed for a one hundred percent survey of farms, and also

the cost, would be prohibitive. The best that we can do is this: select a

sample of farms for which we will obtain all the pertinent information.

Then, the statistical problem of estimation consists in using the data of

the sample to evaluate the approximate value of £.

Example 2.—As a result of a certain illness, the blood of a patient con-

tains a toxic substance A. The effect of the substance A can be neutralized

by giving the patient an injection of a specified chemical B. The treatment

will be effective if the dose of B is appropriately adjusted to the average

content, say 17, of substance A per unit volume of blood of the patient.
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The exact value of 17 could be determined by draining all the blood from

the patient and then performing a large scale quantitative analysis of the

blood. Since this is impractical, the doctor has to adjust the dosage of

his injection, not to the exact value of 17, but to the results of analyses of

two or three small samples of the blood of the patient. Let xi, x2, • •', xn

stand for the determinations of A in n samples of blood. The problem of

estimation facing the doctor is to use these numbers xu x2, • • •, xn in order

to obtain a value which, presumably, does not differ very much from -q.

Stated in this form, the two problems of estimation just described are

not mathematical problems and, therefore, cannot be given a mathematical

solution. In fact, it is doubtful whether or not any sort of solution can be

offered. Both £ and 17 have a strictly defined meaning and can be computed

exactly. However, in the practical situation, the data necessary for the

evaluation of £ and 17 are missing.

In order to arrive at an acceptable solution of the problem of estimation

based on calculus of probability, we must begin by translating the problem

into the language of probability and by requiring that the method of select-

ing the sample of farms and the method of determination of the substance A

in the samples of blood satisfy certain conditions.

The theory of probability deals with the general question of how fre-

quently this or that event will occur in random experiments of a specified

nature. Thus, in order to apply the theory of probability to any domain,

this domain must involve some elements of randomness and we must have

some information about the nature of the randomness. Thus, if, in the

case of the problem regarding the totality of farms in the United States,

we are given detailed data for, say, 10,000 farms without any information

concerning the method of selection, there is no way in which the theory of

probability can be used to estimate £. The situation is different if we are

told that a sample of 10,000 farms has been drawn at random from the

total population of farms in a specified manner. For example, it may be

specified that the manner of selecting the sample was such that every pos-

sible combination of 10,000 farms had the same chance of being selected.

By this, we mean that, if the sampling procedure is repeated many times,

then each and every combination of 10,000 farms will be selected approxi-

mately with the same frequency. By referring to Part 1, Chapter III, on

"Sampling Human Populations," the reader will see that the scheme of

sampling just described has been labeled "unrestrictedly random." This is

not the only scheme possible and random sampling of farms may be com-

bined with stratification, etc. The essential point is that, in order to apply

the theory of probability, the statement of the problem must involve ran-

domness in one form or another. Similarly, in order to use geometry to

solve a given practical problem, the conditions of the problem must be
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stated in geometrical terras. For example, the question "What is the area

of a red triangle?" cannot be solved by plane geometry because of the lack

of necessary data expressed in geometrical terms.

Once the random method of sampling farms is specified, the character-

istics, say Xi, X2, • • •, Xn, of the n farms which will appear in the sample

become random variables. Ordinarily, the probability distribution of these

random variables will depend on the value of £ and the application of the

theory of probability to the problem of estimation becomes possible.

The situation with the second example is quite similar. As long as

nothing is known about the determinations of the content of A except that

in a given case these determinations gave, say, 3.5 percent, 4.3 percent

and 5.1 percent, the theory of probability is helpless to provide anything

about the average content of A in the blood of the patient. However,

repeated studies of the method of obtaining determinations of A, similar

to the work of Matuszewski and Supinska, described in Part 2, Chapter I,

may reveal the following.

If the same method is applied many times, then the individual determi-

nations group themselves about the true average content -q in a manner

characterized by the normal law of frequency. In other words, previous

empirical studies may indicate that the relative frequency of determinations

falling within any specified interval (a,b) differs but little from the integral

rVzir

f

e-i*-wdx

where <r may vary from one patient to another. If so, then the future

determinations of A contemplated for a given patient may be considered

as random variables following the normal law with unknown mean -q and

unknown variance a2.

Generalizing these remarks relating to two particular examples, we may

say that the statistical problem of estimation, to be solvable by means of

the theory of probability, must involve the following elements.

(a) There must be one or more random variables, say X\, X2, •••, Xn,

particular values of which will be given by future observations. These

variables will be described as the observable random variables and, for

the sake of brevity, their set will be denoted by a single letter E (the event

point).

(b) The probability distribution of the observable random variables must

be known to belong to a specified family, say F. Ordinarily, the particular

distributions belonging to F are represented by the same formula involving

one or more parameters, say 0u 02, • • •, 0„ each capable of assuming a

certain set of values. Thus, in order to specify completely any one of the
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158 MATHEMATICAL STATISTICS AND PROBABILITY

distributions belonging to F, it is sufficient to specify the values of the '

parameters 0lt 02, '••, 0s.

The general problem of statistical estimation consists in devising a

method of making assertions regarding the value of one (or more) parameter

out of the set 01, 02, •••, 0,, in relation to the particular values of the

random variables X\, X2, •••, Xn which will be furnished by observation.

Example 2 provides a simple illustration of the general situation. Let n

be the number of contemplated independent determinations of the content

of substance A in samples of blood of a patient. Then the totality E of

future observations is represented by n independent random variables,

Xi, X2, •••, Xn. The empirically supported postulate that each such deter-

mination is a normal variable with expectation rj and variance a2, amounts

to postulating that the joint probability density function of E is represented

by the formula

*(*,*,-,*o-(^)V«-.,•*• (.)

where rj and <r are two parameters with unspecified values and xi, x2, • • •, x„

denote possible values of the random variables Xu X2, • • •, Xn. Thus, we

may say that, in this particular case, the actual distribution of E is known

to belong to the family F of distributions, each characterized by the prob-

ability density of the same form (1), with only two parameters, 17 and a.

Due to the particular nature of the problem in which -q represents the

average content of substance A in the blood of the patient, it is possible to

assert that 17 cannot be negative and cannot exceed one. Furthermore, there

may be biological reasons insuring that -q must lie between even narrower

limits. Also, the same kind of argument will be applicable to a, with the

result that it may be taken for granted that its value cannot exceed some

specified limits. If we grant the approximation by the normal law, formula

(1) and the limits for 17 and <r summarize our postulated knowledge of the

observable random variables Xu X2, .••, Xn. Our interest in the actual

value of rj leads to the search for a method of using the observed values of

Xi, X2, • • •, Xn which will be furnished by the chemical analyses to make

assertions regarding 17.

The words used, to the effect that we search "for a method of making

assertions regarding -q," do not describe the situation completely. We do

not search for just any method of making assertions, but for a method that

is, from some convincing point of view, a satisfactory method. Even more,

we are likely to prefer the method that is the best of all possible methods.

While there is likely to be general agreement as to the desirability of

using the best, or at least a satisfactory, method of making assertions

regarding 17, there may be difficulty in explaining exactly what properties
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a method of estimation should possess in order to qualify as the "best" or

as "satisfactory." And without having such an exact explanation, without

knowing exactly what we are looking for, it is obviously hopeless to expect

that we shall ever find it. If it were possible to devise a method of using

the values of the observable random variables to predict exactly and without

fail the value of the estimated parameter, then there would be universal

agreement that the method in question is the best imaginable. However,

it is obvious that, barring some very artificial examples, such a method

does not exist and we have to put up with unavoidable errors. For example,

whatever the method of using the determinations of the toxic substance A

in a few samples of blood, it is obviously impossible to expect that the

outcome of estimation will always give the true value of rj. On the con-

trary, we may take it for granted that the estimate obtained will always

differ from the exact value of rj. Similarly, whatever the method of esti-

mating the characteristic £ of the totality of farms in the United States

by the use of a sample, smaller or larger errors of estimation are unavoidable.

This being the case, what should be our definition of a "satisfactory"

method of estimation? What should be the definition of the "best"

method?

Before attempting to answer these questions, let us consider the possible

forms of the assertions regarding the estimated parameter which can be

made using the values of the observable random variables. The sim-

plest form is the so-called "point estimate." The method of point esti-

mation of a parameter 8 consists of defining a single-valued function, say

8*(E) - 0*0X1, X2, •••, Xn), of the observable random variables and,

whenever the observations give Xi - xi, X2 = x2, • • •, Xn = xn, of making

a rule of asserting that 0 = 0*(xi, x2, •••, xn). The function 0*(E) is

called the point estimate or the single estimate of 0.

As already mentioned, in many cases it is more or less hopeless to expect

that a point estimate will ever be equal to the true value of 0. In cases of

this kind one is naturally interested in the precision of the estimate used.

This precision may be usefully characterized by indicating the limits which

the error in the estimate, presumably, could not exceed. As a consequence

of this tendency, the results of practical investigations are frequently pub-

lished in the form 0* ± S, e.g. 10 ± 1.3, or the like. This form of giving

the results of statistical estimation suggests that, while the presumed value

of the estimated parameter is 10, there is expected an error of estimation

which, however, should not exceed 1.3 either way. It will be noticed that,

in effect, this method of estimation amounts to computing from the results

of observation not one but two different functions, 0* - S and 0* + S, and

asserting that the true value of the parameter 0 lies somewhere within the

limits from 0* - S to 0* + S.
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160 MATHEMATICAL STATISTICS AND PROBABILITY

This procedure is obviously different from that of point estimation. It is

described as the estimation by interval. In general terms, the estimation

by interval consists of denning not one, but two functions of the observable

random variables, say 0(E) and 0(E), and of making a rule of asserting that

the true value of 0 lies between the limits 0(xi, x2, • • •, xn) and 0(xi, x2, •••,

xn), whenever the observations give Xi = xi, X2 = x2, • • •, Xn = xn. The

functions 0(E) and 0(E) used in this manner are described as the lower and

the upper estimate, respectively. Also, an occasion, it will be convenient to

speak of "theta lower" and "theta upper."

The above two forms of estimation, by single estimate and by interval,

are not the only possible methods. In fact, both are particular cases of a

more general procedure of estimation by a set. The latter, while theoretically

possible, does not seem to have much practical interest. In fact, if it is

suggested to use a method of statistical estimation which may lead to the

assertion, for example, that the mass of a particle is a number of grams com-

mensurable with V it and contained between zero and one, then we may

confidently expect that the physicists concerned will show some signs of

indignation. For this reason we shall limit our considerations to estimation by

a single estimate and by an interval.

With reference to single estimates, roughly one can say that a point estimate,

to be satisfactory, should not differ from the estimated quantity "too fre-

quently too much." While intuitive, this statement is obviously too vague

to serve as the basis for a theory of estimation. One way of specifying the

problem exactly is to reduce it to the problem of estimation by interval.

In fact, if this problem is solved satisfactorily, then the point estimate repre-

sented by some specified interior point, e.g., by the midpoint of the estimating

interval, would probably seem acceptable.

If now we turn our attention to the problem of estimation by interval, we

find that this problem is easier to put into exact terms in a manner likely to

satisfy the practical statistician. In fact, there is one obvious requirement

which any "satisfactory" method of estimation by interval should meet.

This is that if it is impossible to arrange that the results of estimation are

correct always, we may at least expect them to be correct frequently. In more

precise terms, it is natural to require that the estimating interval cover the

true value of the estimated parameter with a high relative frequency and that

it be possible to fix this frequency in advance. In probabilistic terms this

postulate is expressed as follows: (i) when estimating an unknown parameter

0, the satisfactory lower and upper estimates of 0 must have the property that the

probability P{0(E) ^ 0 ^ 0(E)) be computable and close to unity. If this

probability has a specified large value a, say a = .99, then the practical

statistician using the estimates 0(E), 0(E) will have the assurance that, in

the long run, his assertions regarding the estimated parameters in the form
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8(E) ^ 8 ^ 8(E) will be correct about 99 percent of the time, and this is

likely to satisfy him. In fact, in this case, each of his assertions regarding the

value of 8 will be exactly comparable to playing a game of chance with the

probability of winning equal to a = .99. Naturally, the actual realization

of this high frequency of correct assertion regarding 8 depends on how closely

the postulated properties of the observable random variables agree with the

actual conditions of experimentation. Thus, if we postulate that the deter-

minations of the toxic substance A are normally distributed, while in actual

fact these determinations have, say, a skew U-shaped distribution, then the

interval estimation of i\ based on the assumption of normality need not give

the expected frequency of correct results. However, the basic agreement

between the postulates of the theory and the phenomena studied is omni-

present in all problems of application and, in this particular respect, the prob-

lems of estimation do not present any sort of exception.

Suppose for a moment that the problem of determining the lower and the

upper estimates satisfying requirement (i) is solved and that there is more

than one solution. Suppose, for example, that two pairs of functions 8(E),

8(E) and 0(E), 0(E) both satisfy the condition that

P{8(E) g 8 g 8(E)} = P{0(E) £ 8 £ 0(E)) = a.

Thus, whether the practical statistician uses 8(E) and 8(E) or 0(E) and 0(E),

his assertions regarding the value of the estimated parameter will be correct

with exactly the same long run relative frequency a, chosen by himself. In

these circumstances, the statistician will be faced with the problem, which we

shall denote as problem (ii), of choosing between the estimates 8(E) and 8(E)

on the one hand and the estimates 0(E) and 0(E) on the other. Naturally

he will consider the question, which of the two pairs of functions will provide a

more exact estimate. If possible, the practical statistician will select for his

use the particular pair of functions for which the length of the estimating inter-

val is the least. Should it be impossible to satisfy this condition uniformly

so that the selected pair, say 8(E), 8(E), always gives narrower limits for 8

than any alternative pair, 0(E), 0(E), that is,

0 g 8(E) - 8(E) g 0(E) - 0(E),

then the practical statistician is likely to formulate some sort of second

best requirement substituting "most frequently" for "always" or some such.

The essential point in this discussion is that, after finding several estimating

intervals capable of covering the true value of the estimated parameter

with the same relative frequency, the choice between these estimating

intervals will be based on considerations of their length.

You will realize that, compared with the statement of the practical

problem of statistical estimation as illustrated in the two examples dis-
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162 MATHEMATICAL STATISTICS AND PROBABILITY

cussed at the outset, we have gone a long way toward transforming the

practical problem into a mathematical problem. However, even now the

problem has not been made entirely precise.

The complete specification of the problem of estimation depends on the

assumed conditions. As we have already emphasized, these conditions

must imply that the observable random variables Xi, X2, • • •, Xn are ran-

dom variables with a distribution connected in some way with the quantity

that one desires to estimate. For example, the observable random variables

may be known to be of continuous type and it may be known that their

probability density function, say

Px| efri, x2, • ••, xn | 0i, 02, .., 0,),

has a known form and depends on some s parameters 0i, 02, • • •, 0, the values

of which are uncertain. Our problem may be to estimate one (or more) of

them, say 8i. Generally, problems of estimation vary in the amount of

knowledge of the distribution of the observable random variables and the

connection between the quantity to be estimated and the distribution need not

be so simple. However, the assumptions just made are sufficiently illustra-

tive and we shall adhere to them.

In addition to the data regarding the distribution of the observable random

variables, the problems of estimation vary in respect to a very important

factor which is our assumed knowledge regarding the quantity to be estimated,

8i, and also regarding such other unknown parameters 02, 03, • • •, 0, as may

appear in the probability density px \ e(xi, x2, • • •,xn\ 8i, 02, • . •, 0»). In many

practical problems, a certain amount of knowledge regarding these parameters

is always available. For instance, the conditions of the above example 2

imply that the quantity t) is a non-negative number not exceeding unity.

Also, there may be some additional items of information which affect the form

of the problem of estimation. The most radical difference in this form depends

on whether or not the parameters 8i, 82, •", 0» ore themselves random variables,

the distribution of which is known sufficiently to be used in calculations. In

relation to any given problem, this paramount question has to be answered

by the practical statistician treating it. Our purpose here will be to describe

the nature of the problem of estimation under both sets of conditions, when

the unknown parameters are random variables with a known distribution

and when they are not.

THE CLASSICAL BAYES* APPROACH

Historically, the first precise treatment of the problem of estimation refers

to the case when all the unknown parameters are random variables with a

postulated distribution. Therefore, we shall begin our exposition with this

particular case. The classical statement and solution of the problem are

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

0
 1

5
:4

1
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

7
2

9
7

9
8

2
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



STATISTICAL ESTIMATION 163

based on the famous formula of Bayes.1 After presenting them, we shall

outline a more modern approach to the problem treated under the same

conditions.

Consider, then, a set of observable random variables, Xi, X2, •••, Xn with

a probability density function px\e(xi, x2, ••*, xn | 8i, 02, •••, 0«) which

depends on s unknown parameters, 01( 02, • • •, 0«. Assume that the conditions

of the problem imply that these parameters are also random variables with

a probability density function ¥«(#i, #2, • • •, #«). Ordinarily, the distribu-

tion determined by this function is called the a priori distribution of the

parameters 8i, 82, • • •, 8, and is contrasted with the a posteriori distribution

obtainable from Bayes' formula, say

*(#1, #2, ••*,#« | xu x2, •••, xn)

*e(di, #2, .••, #*)PX | o(xi, x2, •••,xn\ du t?2, • ■ ', #,)

(2)

X Px | »(*1, *2( • •', xn | «?i, #2, •' ., #,) ddi dd2... dd,.

»

Here the integration in the denominator extends over all systems of values d

of the 0's which are compatible with the values xi, x2, . • •, xn of the observable

random variables. Integrating $ for d2, d3, •••,d, over all systems of values

compatible with the fixed value di of 0i, we obtain the a posteriori probability

density function of 0i given the values xi,x2, • • •, xn of the observable random

variables, say

*»(*i I xi, x2, . . •, xn) =J . .\^dd2dd3 . . • dd,. (3)

The product in the numerator of formula (2) represents the joint probability

density function of all the parameters 8i, 82, • • •, 0« and of all the observable

random variables Xu X2, •", Xn. Integrating it for di, d2, • • •, #, for all

combinations of their values compatible with the fixed xi, x2, •••, xn, we

obtain the absolute probability density of Xi, X2, •• •, Xn, say

Px(xi, x2, •••,xn)

- J . . J*t(<h, <b, • •', #>)Px | #(*i, x2,...,xn\ #i, «?2, ••.,*,) ddi d&2 • . . dd,.

This expression appears in the denominator of formula (2).

The function ^(^i | xi, x2, •••, xn) is the basis of the classical procedure

of estimating 0i. Its interpretation is as follows. We visualize a set of cases,

1 Thomas Bayes: "An essay towards solving a problem in the doctrine of chances."

Phil. Trans., London, Vol. 53 (1763), pp. 376-398, Vol. 54 (1764), pp. 298-310.
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164 MATHEMATICAL STATISTICS AND PROBABILITY

to be described as "human experience" and denoted by H, in which we shall be

confronted by the problem of estimating 0i. In the particular cases which

form human experience, the values di, d2, •",d» of the unknown parameters

0i, 02, . • •, 0, vary from case to case and the function %(dx, #2, • • •, #«) char-

acterizes the frequency distribution. For example, the relative frequency of

cases when 8i will fall between any specified limits a < 0i < b is obtainable

from %t by integrating it for #i between a and b and for d2, #3, • . •, #« within

the extreme limits of their variation.

In parallel with changes in the values of the 0's, the particular cases of

human experience will differ in the values, say xi, x2, • • •, xn, assumed by the

observable random variables and this variation is characterized by the prob-

ability density function px\#(xi, x2, • . ., xn\ #i, #2, • • •, #«)• Now, within

human experience H, isolate a part, say H(xi, x2, • • •, xn), in which the value

of Xi is xi, the value assumed by X2 is x2, etc. Naturally, within the series

of cases H(xi, x2, • • •, xn), the values of the 0's will vary. The above formulae

(2) and (3) give the probability density functions relating to the part H(xi,

x2, • •' , xn) of human experience, joint of all the 0's and of 0i alone, respectively.

Thus, the exact statement of the classical form of the problem of estimating

0i is as follows: We have observed Xi = xi, X2 = x2, • • •, Xn = xn—therefore

we appear in part H(xi, x2, • ••, xn) of human experience; what is the most

probable value, say 0\(xi, x2, • • •, xn) of the parameter 8i? The value 0i(zi, x2,

• • ., xn) required (called the a posteriori most probable value of 0i given

Xi = xi, X2 = x2, . • ., Xn = xn) is simply that value of # for which <p(d \ xi, x2,

• • •, xn) is a maximum.

The a posteriori most probable values of the estimated parameters have been

used extensively as unique estimates since the time of Bayes. Also, once we

place ourselves in the specified section H(xi, x2, • • •, xn) of human experience

and limit our consideration to probabilities referring to this section, there is

no difficulty in treating the problem of estimation by an interval. In fact,

let 8 = 0(xi, x2, •••, xn) and 8 = 0(xi, x2, • • •, xn) be two numbers which, for a

specified « between zero and unity, satisfy the condition

P{8 g 0i ^ 0 | xi, x2, . • ., xn} =J <p(di | xi, x2,..., xn)ddx = a. (4)

Obviously, there is an infinity of pairs of numbers satisfying this condition

and, if 0 and 0 are to be used to estimate 0i, it is natural to require that in

addition to satisfying (4), the two estimates also minimize the difference

8(xi, x2, •••, xn) - 0(Z1, x2, . . •, xn). (5)

When the probability density <p(di \ xi, x2, • • •, xn) is continuous, the problem

of minimizing (5) subject to restriction (4) is trivial and the solution provides

the desired estimating interval. This interval will be called the classical
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STATISTICAL ESTIMATION 165

Bayes' estimating interval. Its properties are: (a) within the section H(xr,

x2, • • •, xn) of human experience, the frequency of cases where the value of

0i will be within the interval (0, 8) equals the number a selected by the statisti-

cian himself, and (b) no interval shorter than (8, 8) having the property (a)

is in existence. These properties of the classical Bayes' estimating interval

may be judged a sufficient justification for using it in practice. However,

it is important to be aware of other possibilities which are available when the

a priori distribution of the unknown parameters is known.

THE MODERNIZED BAYES' APPROACH

In considering these alternative possibilities we should ask ourselves, Why

should we refer the probabilities of success in estimation to the section

H(xi, x2, • • •, xn) of human experience? The point of this question is that,

even if one is professionally engaged in solving problems of estimation as

a matter of daily routine, it will only be most exceptionally that one will

be confronted with a set of observations, say xi, x2, •••, xn', which has

already been observed in the past. Normally, the whole experience of a

statistician estimating a given parameter will be composed of cases in

which the sets of observations are all different. Thus, this statistician's

life experience will consist of cases each extracted from a different section

H(xu x2, •", xn) of human experience.

Let us illustrate this by an example. Consider a case in which a contract

between a beet sugar factory and a group of beet growers provides for a

varying price per ton of beets depending in some way upon the interval

used to estimate the average sugar content in a carload of roots. In prin-

ciple, the sweeter the beets, the higher the price. However, if the estimating

interval is broad, a certain decrease in price is allowed due to uncertainty

as to the actual sugar content.

In order to determine the price, a sample of beets is drawn out of each

carload and several independent determinations, say Xi, X2, • • •, Xn, of

the sugar content are made. These determinations are then used to com-

pute an interval estimating the average sugar content in each carload.

Ordinarily, it is assumed that the variables Xi, X2, • • •, Xn are independent

and follow the normal law of frequency. On this assumption, the prob-

ability of observing twice (i.e. for two carloads) the same system of values

of the X's is equal to zero. Since the determinations are made only with

limited accuracy, strictly speaking, the variables Xi, X2, • • •, Xn are not

of continuous type and the probability of observing the same system of

their values twice (or more) is not exactly equal to zero. Nevertheless,

the probability is extremely small and it is safe to say that the experience

of the factory will consist of cases where the variables Xi, X2, • • •, Xn
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166 MATHEMATICAL STATISTICS AND PROBABILITY

assume a multitude of different systems of values, with scarcely any repe-

titions. In these circumstances, it does not seem reasonable to insist that

the method of estimating the mean sugar content insures that, within each

section H(xi, x2, • • ., xn) of human experience, the probability of covering

the true mean sugar content by the estimating interval be exactly equal

to the preassigned a. On the contrary, it may be presumed that both the

farmers and the administration of the factory will agree that the desirable

method of computing the estimating interval should insure (a) that the

overall relative frequency [contrasted with the relative frequencies relating

to each section H(xu x2, .••, xn) separately] of successful estimation be

equal to the selected number a close to unity and (b) that, at least on

the average, the estimating intervals be as short as possible without infring-

ing condition (a).

It will be seen that here we come to a novel aspect of the problem of

estimation. In order to arrive at its exact formulation, it was necessary

to realize the fact that, whatever the method used, the outcome of the

process of estimation based on some observable random variables has itself

the property of being random. It is curious that this fact, noted by Laplace

and Gauss, was later forgotten and did not reappear in the literature until

in the 1930's.

Upon reflecting on the various practical problems of estimation, it is

easy to see that a great many of them resemble the situation implied by

the contract between the beet growers and the sugar factory. However,

there are examples in which the appropriate point of view on estimation

seems to be the classical Bayes' described above. Consider the following

situation.

Suppose that the observable random variables Xi, X2, • • •, Xn are some-

thing like the outcomes of an aptitude test taken by a young man pre-

paring to select a profession for himself. Suppose further that the apti-

tude test measures exactly the attributes of the individual so that, while

Xi, X2, • . • ,Xn vary from one individual to the next, they are constant for

each particular individual. Our final assumption is that the individual's

success in the various available professions depends upon the parameter 0i

to be estimated.

Now consider a particular individual, a Mr. John Frederick Smith, for

whom it was found that Xt = xu X2 = x2, • . •, Xn = xn. It is obvious that

Mr. John Frederick Smith's point of view on estimation will be different

from that of the administration of the beet sugar factory. The experience

of the latter will involve many carloads of beet roots with varying mean

sugar content and the important point is to insure overall high frequency
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of successes in estimation combined with satisfactory precision. On the

other hand, the whole life of Mr. John Frederick Smith will be tied up

with just one section of the whole human experience, namely with the

section H(xi, x2, • • •, xn). Therefore, if Mr. John Frederick Smith's actions

are to be adjusted at all to outcomes of statistical estimation, it is natural

for him to insist on probabilities referring to H(xi, x2, "•, xn) rather than

to the whole human experience.

To illustrate this point more clearly, let me refer to phenomena of

racial discrimination which still infest substantial parts of human society!

Imagine that the variables Xi, X2, • • • ,Xn determine the race of Mr. John

Frederick Smith and that he is forced to live in a place where the general

circumstances of life of individuals of one race are sharply different from

those of another. It is obvious that, having established his racial identity,

Mr. John Frederick Smith will be wise to build his own life in conformity

with statistical data relating to particular races taken separately, rather

than to the overall figures concerned with the total human experience.

The case of John Frederick Smith illustrates, then, the general situation

where the classical Bayes' approach to the problem of estimation appears

reasonable. The existence of such cases, however, should not blind us, as

it did for over a century, to the great mass of other cases in which the

restrictiveness of the classical approach can be usefully relaxed. Many

important results in this direction, primarily concerned with point estima-

tion, are due to Wald, Wolfowitz, Girshick and others. We will consider the

following problem.

Let Xu X2, • • •, Xn denote a set of observable random variables and let

0i be the parameter to be estimated. With each system xi, x2, • • •, xn of

possible values of the X's we shall connect a set 8(xi, x2, •••, xn) of possible

values of 0i to be used for estimating 9i. Whenever the observations yield

.3Ti = xi, X2 = x2, • • •, Xn = xn', we shall substitute the observed values

into the function 8(xi, x2, .••, xn) and assert that the unknown 8x is one

of the numbers included in 8 (xi, x2, • • •, xn'). Let a be a fixed number,

0 < a < 1, close to unity.

We shall say that the set 8 (xi, x2, • • •, xn) is the modernized Bayes' esti-

mating set (MB for short) corresponding to the confidence coefficient a if

it satisfies the following two conditions:

(1) The relative frequency of cases within the whole human experience

(i.e., the probability) where the set O(Xi, X2, •", Xn) will cover

the true value of 8x is equal to a;

(2) Of all sets satisfying condition (1) the set 8(Xi, X2, • • •, Xn) has

the smallest expected Lebesgue measure.
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168 MATHEMATICAL STATISTICS AND PROBABILITY

In order to deal with the general case, it is convenient to speak of

an estimating set. However, if the reader tries to apply the following

theory, he is most likely to find that the modernized Bayes' estimating set

reduces to an interval bounded by two functions, say 8'(Xu X2, •••, Xn)

nr(Xi,x», ••.,xn).

In order to solve the problem of the MB set, it is sufficient to express

the two conditions (1) and (2) in formulae and to apply an easy lemma,

occasionally described as the Fundamental Lemma in the theory of optimum

tests. Applied to the present case, the lemma asserts the following.

(a) If Fi(ti, t2, . . ., tn) and F2(<i, t2, . • ., tn) are any two functions in-

tegrable over any measurable set of systems of values of the arguments

(b) // w0 is a set of systems of values of ti, t2, • • •, tn which contains all

systems (<1( t2, • • ., tn) where

Fi(h, t2, •", tn) < aF2(ti, t2, • • •, tn)

and none of those where

Fi(h, t2, • • •, tn) > aF2(ti, t2, . ••, tn);

(c) // w is a measurable set of values of ti, t2, • • ., tn such that

/• • • I F2dtidt2 .•• dtn = I • • • j F2 dh dt2 • . • dt,

then

/. • • f Fi dti dta • • • dtn ^ j . • • \ Fi dh dt2 • • • dtn.

In other words, of all sets w for which the integral of F2 has the same

values, the set w0 ascribes to the integral of Fi the smallest possible value.

Now let us return to the search for MB sets. For this purpose, consider

the systems of possible simultaneous values (#, xi, x2, • • •, xn) of the estimated

parameter 8i and of the observable random variables Xi, X2, •••, Xn. In

order to visualize these systems, it will be convenient to consider a space <S

of n + 1 dimensions, with axes of coordinates of xi, x2, • • ., xn and «?. The

totality of MB sets can be interpreted in the space S as a region (or a set)

w0 containing all points with arbitrary coordinates xi, x2, •••, xn and with

coordinate # belonging to 0(xi, x2, •••, xn). As usual, W will stand for the

whole sample space.

With this interpretation, condition (1) in the definition of MB sets can be

expressed by equating to a the integral over w0 of the joint probability density

function of 8i and Xi, X2, • • •, Xn. Thus,

n»
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/. • • I px(xu x2, •••, xn) I <p(d I xi, x2, .••,xn)dddxi ••. dxn (6)

= \ ' " \ Px(xu x2, •• •, xn)<p(d | xu x2, • • •, xn) dd dxi • . . dxn

J •/ICO

= a.

Similarly, the second condition denning MB sets is expressed by the formula

/• • • I Px(xi, x2, •.•, xn) I dd dxi dx2 • • . dxn

JW Je(x1,x2,. . .,xn)

- I • • • J px(xi, x2, • • ., xn) dd dxi dx2 • . . dxn

/Wo

= minimum.

This last formula is due to the fact that the measure of the set 8(xi, x2, • • •, xn)

is equal to the integral of unity extended over the set. The application of the

Fundamental Lemma leads to the conclusion that, in order to determine Wo

it is sufficient to find a constant a and a region w0 including all points where

Px(xu x2, .••, xn) < apx(xu x2, •••, xn)<p(d \ xu x2, • • •, xn)

and none of those where

Px(xi, x2, • • •, xn) > apx(xi, x2, •••, xn)<p{d I xi, x2, • • •, xn)

and such that

/• • • I Pxixu x2, ••., xn)<p(d | xi, x2, • • ., xn) dd dxi ••. dxn = a.

Jwo

Since the probability density px is never negative and since we can ignore

points where it is zero, it is seen that the region w0 is defined by the condition

¥>(#| xi, x2, •••,xn) ^ a (7)

where a is an appropriate constant. Further on we shall illustrate the proce-

dure in a practical example. It consists in writing down the a posteriori

probability density function <p(d \xi, x2, • • •, xn) of the estimated parameter

and in substituting it into formula (7). This formula must then be solved

with respect to d. The solution, in the form of one or more inequalities

(combined with equalities) imposed on d, determines the set 0(xi, x2, . . •, xn).

Obviously, this solution will depend on the chosen a. The value of this con-

stant is adjusted to satisfy condition (6).

In order to illustrate the various concepts discussed we shall now consider

some examples. First we shall adopt the classical Bayes' point of view and
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illustrate how the a posteriori most probable value of a parameter and the

classical Bayes' estimating interval depend on the a priori distribution of this

parameter. Next, on a slightly different example, we will illustrate the rela-

tionship between the classical and the modernized Bayes' estimating intervals.

In both cases we shall be interested in the conceptual rather than in the

practical numerical side of the problem. For this reason, the examples are

especially selected so as not to involve technical complications, cumbersome

integrals, etc.

We are going to consider n observable random variables Xi, X2, • ••, Xn,

all independent and each known to be uniformly distributed between zero and

a positive number 0. We shall assume that our knowledge of this number 0

is limited to the double relation, 0 < 0 j£ 1, and we shall consider the problem

of estimating 0. Thus, in this example, the joint probability density function

of all the observable random variables depends on only one unknown pa-

rameter, namely 0, and is given by the formula

, 1

Pe(zi, x2, • • •, xn \0) - — for 0 ^ xu x2, •.•,x,^«

en

= 0 elsewhere.

In order to illustrate the use of Bayes' formula, we shall assume that 0

itself is a random variable with the probability density function of the simple

form,

*(0) = wJET-i for 0 < 8 g 1

(9)

= 0 elsewhere.

Here to represents a positive number. Let the letter x without any sub-

script denote the greatest of the numbers xi, x2, • • •, xn which may be given

by observation as particular values of the variables Xi, X2, . • •, Xn. The

capital letter X without any subscript will denote the random variable defined

as the greatest of the Xi, X2, •••, Xn. Thus, x is a particular value of X

which may be given by observation. The definition of the random variables

Xi, X2, •", Xn implies that 0 ^ X ^ 8 so that, if the observations have

determined a value x of X, then 0 ^ x. Substituting (8) and (9) into (2),

we obtain the a posteriori probability density of 0, say

am-n-i

<pifi I xu x2, • • •, xn) = —j for 0 < x g 0 g 1

I-»-1

= 0 elsewhere.

If to 7^ n, then this formula gives
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. (m - n)8m~n-i

<p(0\xi,x2, .•.,«.) =— m_n forO<xg0^1

= 0 elsewhere.

Otherwise, if m = n, then

. 1

<p(8 I xi, x2, . . ., xn) = for 0 < x ^ e ^ 1

Ologx

= 0 elsewhere.

(11)

(12)

It follows that the a posteriori distribution of 0, given xi, x2, •••, xn, depends

effectively only on the greatest x of the xi,x2, •", xn. Given the value of x,

the most probable value of 0 depends on the relation between m and n. If

m = n + 1, then <p(8 \ xi, x2, • • •, xn) is constant within the interval {x, 1),

. 1

<p(8 | n, x2, • •', xn) = for x ^ 8 ^ 1

1 - x

= 0 elsewhere.

Thus, in this particular case, all the numbers of the interval (x, 1) are the

a posteriori most probable values of 8. Also, in this case, any value may be

ascribed to 8, subject to the restriction,

x ^ S ^ 1 ~ «(1 ~ x),

and then the corresponding value of 0 will be

8 = 8 + a(1 - x) g 1.

Hence, we have at our disposal an infinity of pairs of estimates varying be-

tween the extremes, say

8' = x, W = (1 - a)x + a,

and

8" = ax + 1 - a, 8" = 1.

Any pair of estimates such as these may be used and the consequences will

be the same: the probability of the statement regarding the true value of 8

which is in the form 8 ^ 8 ^ 0 is equal to the preassigned number a. Also,

whatever be the choice of the pair of estimates within the set indicated, the

precision of the assertion regarding 0 will always be the same because, for all

the estimates considered, the difference 0 - 0 has the same value, namely,

a(l - x).

No such arbitrariness of choice exists when m ^ n + 1. If m < n + 1,

then the a posteriori probability density of 0 decreases as 0 varies from x to 1
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and the most probable value of d is x.

Bayes' estimating interval is 0 = x.

0, we have to solve the equation,

Also, the left boundary 0 of the classical

In order to obtain the right boundary

C

I <p(fi\ xi,x2, •••,xn)de = a.

If m j£ n, then this equation gives

0 = [(1 - a)xm-

+ a]

i/(m-n)

Otherwise, if m = n, then 0 = xi~a.

If m > n + 1, then the situation is reversed, the a posteriori probability

density function of 0 increases with the increase of 0 from x to 1, and the most

probable value of 0 is equal to unity, irrespective of the observed value of x.

In this case, 0 = 1 and 0 satisfies the equation,

which reduces to

X<p(d\xi,x2, .••,xn)dd = a,

„

0 = {axm-n + 1 - a)1'^-").

The purpose of the above discussion is to show that both the single esti-

mate, represented by the a posteriori most probable value, and the classical

Bayes' estimating interval may depend very strongly on the a priori distri-

bution of the estimated parameter 0. In order to emphasize this circum-

stance, all the results obtained are collected in tabular form.

Most probable

value

Estimates of 8 in relation to m

0

Theta lower

Six)

Theta upper

- < n + 1

e(x)

(a) - ?^ n

X

X

X

id

- a)xm~n + a]1/<m-")

z1—

S + a(l - X)

1

(b) - = n

m = n + 1

m > n + 1

X

i^Sgl

1

x g e g i - «(i - *)

[axm-n + (1 - a)]ilim-n)

Figures 1 through 4 illustrate the situation which corresponds to a fixed

value of n, n = 4, and to three different values of m, m = 4.5, 5.5 and .5,

respectively. It is seen that for any given x the most probable value of 0

and also the classical Bayes' estimating interval depend very much upon
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FlOUKE 1

A priori distributions of B

V.w)

/ \pz = 5.5)

Tf3 (8)

P«3 = .5]

.1 .2 .3

.5 .6 .7 .8 .9 1.0 ©

the a priori distribution of this parameter. According to the properties of

* (8), the most probable value of 8 may be x itself or unity. The estimating

interval may begin at x or end with unity; it may be wide or narrow. The

interesting point is that a very substantial change in estimates of 8 occurs

when the a priori distribution *(0) changes very moderately, say from

*i(0) to #8(0).
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Figure 2

Classical Bayes' estimating intervals corresponding to M'iCfl)

mi = 4.5; n = 4; a = S

Situations of this kind are quite common and were noticed long ago.

When the a priori distribution of the estimated parameter is known exactly,

there is no difficulty involved. Frequently, however, the a priori distri-

bution of the estimated parameter is not known and an effort to use the

classical Bayes' approach is combined with the use of a more or less arbi-

trarily selected function which, it is hoped, approximates the a priori prob-

ability density. In such cases there may be difficulties.

Now we shall illustrate the relationship between the classical and the

modernized Bayes' approach. We shall use the same problem of estimating

0 described above, but, in order to simplify the algebra, we shall substitute
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Figure 3

Classical Bayes' estimating intervals corresponding to *2(0)

w»2 = 5.5; n = 4; a = 8

e(x) = l = e(x)

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 x

to = 2 and n = 3. Repeating the discussion of the preceding pages, we find

easily that the classical Bayes' estimating interval is given by

8(x) = x and 8(x) =

1 - o(l - x)

The length of this interval, say B(x), is

x

for 0 < x g 1. (13)

£(*)-

1 - a(l - x)

- x, for 0 < x ^ 1.
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Figure 4

Classical Bayes' estimating intervals corresponding to "irsW

ma = .5; n = 4; a = J&

.1 .2 .3

.4

.5 .6 .7 .8 .9 1.0

Further, easy calculations indicate that the joint probability density of 0

and X is

P».x(#, x) = — for 0 < x g & g 1.

#z

Integrating this expression for # between limits x ^ # ^ 1 we obtain the

absolute probability density of X alone,

Px(x) = 6x(l — x).

It follows that the most frequent value of x is one half. Finally, the a posteriori

probability density of 0 is

*(* | *) =

Pe,x(&, x)

Px(x)

l-x&*

for 0 < x < 1

and

x^&^l.
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Turning to formula (7), we see that the MB estimating set is determined by

the formula,

* 1

1 - x t?2

or

1 x

**J-- (14)

Vol -x

We can simplify the further writing somewhat if we substitute 1/t2 for a.

Then formula (14) will reduce to

*SW —' (15)

Here o and/or t must be adjusted to the value of a. It will be remembered

that conditions of the problem imply that 0 < «? < 1. Thus inequality (15)

implies a real limitation on the value of d only if

Vr^a

1

\1 -x

or if

1

x g

l + t2

Furthermore, (15) is compatible with the necessary condition x ^ # only when

x

1 - x

or

x2 - x + e ^ o.

This condition will always be satisfied when the roots of the quadratic are

complex. This will happen if t > %. Otherwise (15) will be used only for

values of x outside of the interval between the two roots of the quadratic

x2 - x + t2. On the first assumption, namely, that the value of t correspond-

ing to the selected a exceeds one half, the modernized Bayes' estimating

interval for 8 is, say

, x 1

0'(x) = x g 8 ^ t J = 8"(x) for 0 < x ^ r.

A' 1 - x l+t2

(16)

e'(x) = x g e g l = e"(x) for r glgl.

l + t2
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The length of the interval is, say

Mix) = 0"(x) - fl'(x).

Now, let us see how to adjust t to the selected a. For this purpose we write

the expression for the probability that the random variables X and 0 will

satisfy the double relation,

P{8'(X) £ 0 £ 0"(X)} = f px(x) f * Ve | x(#) & dx

J'.1/U+*2) /.([i/(l-x)]H

Px(x) | ^ | x(#) dd dx

o •'«

+ f Px(x)\ pt\z(#)d#dx.

Ji/d+«8) Js

It will be seen that this probability is an increasing function of t. Upon

substituting the expressions of px(x) and of Pe\xW given above and upon

performing the integration, we find that

4t4 + lit2 + 9 3 / 1 - t2

P{8'(X) £8^ 8"(X) = — (arc sin +

4(1 +12)2 St\ 1 + f

for i^t. (17)

The requisite value of t can be found by equating this expression to a

and by solving with respect to t. First, however, we must assure ourselves

that this value exceeds one half. For this purpose we first decide on a = 0.8.

Upon substituting t = % into (17), we obtain the value P = .2593. Hence

the requisite value of t must be greater and formula (17) may be used to

establish it. Easy interpolation gives t = .79614. This completes the

determination of the modernized Bayes' estimating interval for 0. Figure 5

presents both the classical Bayes' estimating interval corresponding to

formula (13) with a - 0.8 and the modernized, corresponding to (16) with

t = .79614. If he uses either, the statistician may be sure that he will be

correct in about 80 percent of the cases. Using the classical solution (13)

he may also be certain that, should it be possible to isolate enough cases

of the general human experience in which X has the same value x, the rela-

tive frequency of successes in this section H (x) of human experience would

also be equal to a. In addition, no shorter interval having this property

can be found. If he uses the modernized solution, no general statement

regarding any particular section H(x) can be made. The inspection of

the graphs on Figure 5 indicates that the MB intervals are sometimes

shorter and sometimes longer than the classical ones. In using the MB
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Figure 5

Comparison of the classical and the modernized Bayes' estimating intervals

m = 2; n = 3; o = .8

.1 .2 .3

.4

.5 .6 .7 .8 .9 1.0

intervals, the statistician may be certain that within the whole human

experience he will also be right in about 80 percent of all cases. Further-

more he may be certain that no other estimating intervals corresponding

to the same a will have their long range average length shorter than the

intervals computed from (16). Whatever the interval, say 0i(x) §02(x),

the expectation of its length is computed from the formula,

EMx) - Mx)] = f Mx) - *i(*)]px(*) dx.

Upon substituting into this formula alternatively the expressions (13) and

(16), it is found
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E[B(X)] - 1 - - - (1 - a)H\ = .2868,

2

= .8

E[M(X)]

1 - t2 x~\ 2 + t2 + i4

3 f 1 - i2 irl

= -1\ arc sin - + - -

8 L 1 + t2 2J

i +12 2j 4(1 + n

2\2

= .2522.

.8

It is seen that, by sacrificing the requirement underlying the classical

approach that the probability of success in estimation be equal to a = 0.8

separately within each section H(x) of human experience, and by requiring

that this probability equal a within the whole human experience, the average

length of the estimating interval can be reduced roughly by 12 percent

of its original value. Naturally, this particular percentage is characteristic

of the particular problem considered. The important point to remember is

that, outside of the category of cases exemplified by the above situation of

Mr. John Frederick Smith, the modernized Bayes' estimating intervals will

ordinarily be, on the average, shorter than the classical ones corresponding

to the same frequency of successful estimation.

As we have already mentioned, the problem of the modernized Bayes'

estimating, intervals is akin to the theory treated by Wald, Wolfowitz, Gir-

shick and others. However, the theory that is treated by these authors is

much deeper and refers to the case in which the a priori distribution of the

estimated parameter is uncertain. Also this theory is mainly concerned

with point estimation.2

DIFFICULTIES CAUSED BY UNCERTAINTY REGARDING THE A PRIORI DISTRIBUTION

AND ATTEMPTS TO CIRCUMVENT THEM

As we have already mentioned, all the above discussion applies to cases

where the a priori distribution of the estimated parameter is exactly known.

This distribution must be implied by the conditions of the particular prob-

lem under consideration. Cases of this kind exist, particularly in genetics

where the postulate of the Mendelian Law implies everything, the random-

ness of the observable variables, the class to which their distribution belongs,

the randomness of the estimated parameters and their a priori distribution.

Unfortunately, situations of this nature are extremely rare and, in prob-

lems of a more common type, various difficulties arise. The randomness

of the estimated parameter requires a postulate entirely independent of

the one which concerns the observable random variables. Moreover, on

occasion one feels reluctant to admit that the parameters are random vari-

ables. Finally, even if the randomness of the parameters is postulated,

2 For illustrations of the problems currently treated, see the article by J. L. Hodges,

Jr., and E. L. Lehmann: "Some problems in minimax point estimation," Annals of Math.

Stat., Vol. 21 (1950), pp. 182-197.
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their distribution is unknown so that the conditions of the practical problem

considered do not include information about the nature of the function

*(0i, 02, •••, 0,) which plays an important role in formula (2). Strictly

speaking, then, in cases of the kind described, the formulae discussed above,

giving the most probable value of the parameter and the classical or the

modernized Bayes' estimating interval, are not applicable because of lack

of necessary data.

This embarrassing circumstance was noticed quite some time ago and

there have been various attempts made to overcome the difficulty. Most

of these attempts have the same theoretical weakness: they are not solutions

of a mathematical problem using the data which are directly implied by

the practical problem considered; instead, they are excuses or alibis for

applying the attractive formula (2) even though the conditions of the

problem studied do not provide the necessary data to substitute in formula

(2). Naturally, these theoretical weaknesses are accompanied by corre-

sponding practical defects.

The first attempt to obviate the difficulty caused by the lack of infor-

mation regarding the probabilities a priori consisted in the formulation of

the so-called "principle of insufficient reason." Roughly, this principle

asserts that, whenever there is no good reason to believe that some par-

ticular possible values of the estimated parameter are more probable than

others, then it is legitimate to substitute in formula (2)

^(fii, 02, • • •, 0,) = C = constant.

There are no laws, as yet, prohibiting the calculation of any formulae, and

I would be the last to suggest that such laws should be introduced. Thus, I

have not the slightest intention of questioning the legitimacy of the substitu-

tion suggested. On the other hand, I wish to point out that, in cases where

the conditions of the actual problem do not imply *(0i, d2, •••, 0,) = C, and

where the substitution of C instead of *(0i, 02, • • •, 0e) is made on the basis

of the principle alone, the results of further calculations using formula (2)

need not have the clear frequency interpretation discussed above. In par-

ticular, the most probable value of the parameter computed using the prin-

ciple of insufficient reason need not coincide with the value of 0 which is

most frequent in the sequence of cases H (x). Furthermore, the estimating

interval computed using the principle of insufficient reason need not contain

the true value of 0 in the stated proportion a of the sequence of cases H(x).

This point is well illustrated in the example described above. Following

the principle of insufficient reason, we should put m = 1 which, with n = 4,

would lead to the conclusion that the a posteriori most probable value of

0 is x, the greatest of the four values of the observable random variables

given by observation. However, if it happens that the true a priori distri-
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bution of 8 is the function ratf"*-1 with m > 5, then, irrespective of the

observed value of x, the value most frequently assumed by 8 in any sequence

H(x) will be unity. Furthermore, the presumed "most probable" value

equal to x will be the least frequent value of 8. A similar disappointment

would result from the application of the Bayes' estimating interval based

on the principle of insufficient reason.

In addition to the above disadvantages, the principle of insufficient

reason is difficult to apply when the set of the possible values of the

estimated parameter is unbounded, for example when the parameter 8 is

capable of assuming any positive value 0 < 8 < oo, or any real value

- oo < 0 < + oo. In cases of this kind the probability density function

cannot be represented by a constant because of the restriction that the

integral of the probability density function extended from - oo to + oo

must be equal to unity. Strange as it may seem, some of the protagonists

of the subjective theory of probability who adhere to the principle of

insufficient reason, are not disturbed by this fact.

In this connection a modification of the principle of insufficient reason

should be mentioned. According to the new principle, formula (2) may

be legitimately computed by substituting for the unknown *(0i, 82, . • •, 8,)

some function, not necessarily a constant, but a special function invented

for this particular purpose and representative of "the state of mind" of the

statistician who lacks any knowledge of what the values of the parameters

Si, 02, •••, Oa might be.

Thus, for example, when one deals with normally distributed variables

having an unknown variance a2, in the absence of any definite information

as to what the a priori distribution might be, it is suggested that one use

the formula, say

o

where c is a constant.

The reason for suggesting this particular function seems to be the fol-

lowing. Let t be a positive number. If we try to answer the question of

the relation between the probability of a < t and the probability of a > t,

the suggested form of ^j(a) has the advantage of not providing any answer.

In fact, treating *j (<r) as the probability density of <r over the whole range

of possible values of <r, from zero to + oo, we may attempt to compute the

desired probabilities by taking the integrals

P{0 < a < i} = c I — = c log a

C"dc

P{t < a < +°°} = c\ — = clog,

0

oo
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It happens, however, that both of these integrals diverge and hence that

there is no real number representing either of them. Thus, it is impossible

to answer the question whether it is more probable that <r < t or that a > t.

Allegedly, this corresponds exactly to our state of mind regarding a, namely,

to the complete lack of knowledge regarding its value. From this point of

view, one might regret perhaps that the integral of *j(a) taken between

any positive limits, 0 < a < 6, converges so that, for example, it appears

possible to compare the probabilities P{.1 < <r < .2} and P{1 < a < 2}

and to find them equal. This circumstance does not seem to be consistent

with the complete ignorance of the value of a which was postulated.

A much pleasanter attempt to deal with the lack of probabilities a priori

consists in an effort to estimate them empirically. This method was used

by many authors but recently it was explicitly advocated by R. v. Mises.8

We may illustrate its use and also its shortcomings on the two examples

mentioned at the beginning of this conference. Thus the doctor who spe-

cializes in treating patients with an excessive content of chemical A in their

blood may keep records of his determinations of chemical A. According to

some method, perhaps similar to the one used by Mrs. Tang in estimating

the distribution of the true sugar excess in varieties of sugar beet, the

doctor may establish a function, say *m(»/), which represents approximately

the true distribution of n in the population of persons ill with the particular

disease, of whom his office patients, in the course of the last year or so, were

a sample. He may then use this function for purposes of estimating n

during the following year.

Undoubtedly, this method of approach is far more realistic than the

invention of a priori distributions without any recourse to actual phenomena.

If it happens both that the population of ill persons does not change from

one year to another and that the growing reputation of the doctor does not

produce a change in the recruitment of his patients, then the function

representing the probability density of -q in one year will be valid for the

next, and the doctor's adjustment of the dose of the drug B will not be

more inaccurate than expected. However, it is common knowledge that

the conditions of health change from one year to another and from one

vicinity to the next and it is these changes that are the danger points of

the doctor's proposed procedure. In fact, conditions of health may be

presumed just as variable in time as the conditions of breeding studied by

Mrs. Tang in 1937. Also, there is another danger, connected with the

unavoidable inaccuracies in estimating the a priori distribution of n using

past experience. To illustrate this point, I call your attention to Figure 1

and to Figures 2 and 3. It is not impossible that the unavoidable random

3 Richard von Mises: "On the correct use of Bayes' formula." Annals of Math. Stat.,

Vol. 13 (1942), pp. 156-165.
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errors involved in using past experience may result in assuming that the

a priori probability density function of 8 is represented by &i(8) whereas,

in actual fact, the true probability density function of this parameter is

*2(0). Figures 2 and 3 show, then, that the a posteriori conclusions based

on *i(0) will be very different from the realities implied by *2(^).

While the suggested procedure of estimating the a priori distribution

using past experience involves some dangers, still it is applicable in all cases

where the same problem of estimation appears again and again and pro-

vides the opportunity of collecting a reasonable amount of data. The first

example used in this conference illustrates a category of problems in which

the procedure is not applicable. In fact, while in recent decades, the gov-

ernments of all civilized countries have made repeated attempts to study

various phases of their economy, including farming, the number of obser-

vations made in the past is plainly insufficient to provide any sort of

approximation to the a priori distribution of a characteristic like the hypo-

thetical characteristic £ of the totality of farms. In addition, it is well

known that the economic processes are rather rapid and the totality of farms

in 1950 is a population entirely different from that in 1940 or in 1930.

These populations and their characteristics are external marks of the cur-

rent economic development with its periods of booms and recessions, and

this is just the reason why, short of a comprehensive probabilistic theory

of national economy, I personally am reluctant to consider £ as a random

variable. The postulation of a definite probability distribution of £ would

seem to be even less appropriate.

Studies of populations are usually made on relatively large samples, cer-

tainly in hundreds and frequently in thousands or in tens of thousands.

Cases of this kind have inspired two great mathematicians, S. Bernstein

and, apparently somewhat later, R. v. Mises, to prove a very interesting

theorem regarding the properties of the a posteriori distribution when the

number of independent observations is indefinitely increased.

Bernstein obtained his result some time before 1915. In fact, in 1915 he

described it in his lectures on probability which I had the good fortune to

attend. R. v. Mises published his result in 1919 * in Mathematische Zeit-

schrift. It must have been proved a few years earlier, thus, at about the

same time as S. Bernstein's result. Both results are to the general effect

that, when the a priori distribution of a given parameter and also the dis-

tribution of the observable random variables satisfy certain conditions of

regularity, then the standardized a posteriori distribution of the estimated

parameter, given n independent observations, tends, as n -> oo, to the normal

distribution with zero expectation and unit variance. Thus, no matter

4 Richard von Mises: "Fundamentalsatze der Wahrscheinlichkeitsrechnung." Math.

Zeit., Vol. 4 (1919), pp. 1-97.
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which particular function * satisfying the conditions of regularity we sub-

stitute into formula (2), if n is sufficiently large, the results of computing

formula (2) will be approximately the same. Namely, whatever a < b,

the a posteriori probability that the difference between the true value of 8

and its a posteriori expectation will be between aat and bat will be approxi-

mately equal to

— f e-*'/2 dx

^le dx'

where a$2 denotes the a posteriori variance of 8.

It should be mentioned that the original paper of R. v. Mises did not

enumerate the restrictions needed for the above conclusion. This gap was

later filled by J. Hosiasson.5

While the Bernstein-v. Mises theorem is a very interesting result, reveal-

ing important properties of the a posteriori distributions, it has definite

shortcomings if it is treated as the basis for extensive applications of the

Bayes' formula. First of all, many problems of estimation arise in which

the number n of observable random variables is small and it is more or

less hopeless to rely on an asymptotic result based on passage to the limit

with n-» oo. Second, the Bernstein-v. Mises theorem requires that certain

regularity conditions be satisfied, and it happens that these conditions are

far from being met universally. For example, they are not satisfied in

the example of n independent variables following distribution (8). As

a result, the a posteriori distribution of 8 is positive only on the interval

(x,l) and, for large values of n, is monotonically decreasing as 8 varies from

x to 1. Obviously, it cannot be made to approach a normal limiting distri-

bution by a mere process of standardization.

The third shortcoming is somewhat delicate. In order to explain it I call

your attention to the description of the theorem given above: "no matter

which particular function * satisfying the conditions of regularity we sub-

stitute in formula (2), if n is sufficiently large, then . . ." [This statement

is made on the premise that the appropriate conditions of regularity are

also met by pa(xi, x2, •• •, x% \ 9i, •••, 8,).] Thus, the theorem asserts that

for every function * of the specified category there exists appropriately

large values of n with which the true a posteriori distribution (standardized)

differs but little from the normal law.

However, the theorem does not assert that sufficiently large values of n

can be found such that, whatever a priori distribution of the specified broad

category we take, the difference between the true a posteriori distribution

6 Janina Hosiasson: "Quelquea remarques sur la dependance des probability a pos-

teriori de celles a priori." Comptes-rendus, Premier Congres des Math, des Pays Slaves,

Warszawa, 1929 (1930), pp. 375-382.
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and the normal limit can be neglected. The Bernstein-v. Mises theorem

does not assert this and the assertion is not true. It follows that, in spite

of all its interest, this theorem cannot be considered as a universal justifica-

tion for the use of Bayes' formula in all cases where the a priori distribution

of a parameter is uncertain.

In the history of methods of estimation, the two principles of best un-

biased estimates and of maximum likelihood estimates play a role apart.

Both were used by Gauss and by many authors thereafter. The principle

of best unbiased estimates was never formulated unambiguously as a prin-

ciple but simply came into frequent use, partly because it is easily applied

in a broad category of cases and partly because it has important advan-

tages as proved by Gauss and later popularized by Markoff.

The principle of maximum likelihood was definitely proclaimed as a prin-

ciple. This was done by R. A. Fisher in a number of his writings from

which I shall give you a few quotations. However, probably feeling the

weakness of a dogma, Fisher6 tried to support the dogma by rational argu-

ments. In this he was very successful and guessed a number of important

properties of the maximum likelihood estimates. Under suitable restrictions

these properties were subsequently proved, with increasing rigor and gener-

ality, by Harold Hotelling,7 J. Doob 8 and, finally, A. Wald.9

Thus, the maximum likelihood estimates will be considered from two

different points of view. First, we shall consider them from the point of

view in which the principle of maximum likelihood is understood to be a

command to use these particular estimates for the sole reason that they

maximize the likelihood function. The second time we shall consider the

use of the same estimates prompted not by the principle but by an under-

standing of the properties which they possess in certain specified cases.

In this, the maximum likelihood estimates will appear to play a role some-

what similar to that of best unbiased estimates, depending upon the prior

solution of the problem of estimation by interval, i.e. upon the solution

which is independent of any assumption regarding the probabilities a priori.

Here is a word of warning. The justification for the use of best unbiased

and maximum likelihood estimates just mentioned is merely a justification.

It is not intended to suggest that this is the only justification possible. We

eR. A. Fisher: "On the mathematical foundations of theoretical statistics." Phil.

Trans. Roy. Soc, London, Ser. A, Vol. 222 (1922), pp. 309-368.

7 Harold Hotelling: "The consistency and ultimate distribution of optimum statistics."

Trans. Am. Math. Soc, Vol. 32 (1930), pp. 847-859.

8 Joseph Doob: "Probability and statistics." Trans. Am. Math. Soc, Vol. 36 (1934),

pp. 759-775.

9 A. Wald: "Note on the consistency of the maximum likelihood estimate." Annals of

Math. Stat., Vol. 20 (1949), pp. 595-601.
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shall discuss this in the next conference after presenting the non-Bayes'

solution of the problem of estimation by interval.

Fisher's dogmatic attitude towards maximum likelihood estimates may

be illustrated by the following quotations, in which the more relevant pas-

sages are italicized.

The rejection of the theory of inverse probability [of the use of Bayes' formula with

an invented a priori distribution: J. N.] was for a time wrongly taken to imply that

we cannot draw, from knowledge of a sample, inferences respecting the corresponding

population. Such a view would entirely deny validity to all experimental science.

What has now appeared is that the mathematical concept of probability is, in most

cases, inadequate to express our mental confidence or diffidence in making such infer-

ences, and that the mathematical quantity which appears to be appropriate for measur-

ing our order of preference among different possible populations does not in fact obey

the laws of probability. To distinguish it from probability, I have used the term

"Likelihood" to designate this quantity; .... (R. A. Fisher: Statistical Methods for

Research Workers. 11th ed. Oliver and Boyd, London, 1950, p. 10.)

The fact that the concept of probability is adequate for the specification of the nature

and extent of uncertainty in these deductive arguments is no guarantee of its adequacy

for reasoning of a genuinely inductive kind. . . . More generally, however, a mathe-

matical quantity of a different kind, which I have termed mathematical likelihood,

appears to take its place as a measure of rational belief when we are reasoning from

the sample to the population. (R. A. Fisher: "The logic of inductive reasoning." Jr.

Roy. Stat. Soc, Vol. 98 (1935), p. 40.)

These quotations illustrate a difference between Fisher's attitude towards

probability and my own. For Fisher, probability appears as a measure

of uncertainty applicable in certain cases but, regretfully, not in all cases.

For me, it is solely the answer to the question, "how frequently this or that

happens."

Now, here are a few quotations from Fisher illustrating his non-dogmatic

attitude toward the principle of likelihood.

Obviously the claim that the likelihood possesses these properties, and provides a

rational basis for exact inference, can only be made in the light of a theory of estimation

applicable to finite samples. In (2) 10 I have developed such a theory, and have

demonstrated that the most likely value of x, that is, the particular estimate found by

the method of maximum likelihood, possesses uniquely those sampling properties which

are required of a satisfactory estimate. (R. A. Fisher: "Inverse probability and the use

of Likelihood." Proc. Cambridge Phil. Soc, Vol. 28 (1932), pp. 257-261.)

Here, then, there is no contention that the likelihood function is in itself

a measure of confidence in a given value of a parameter. On the other

hand, it is claimed that it is advantageous to use the maximum likelihood

estimates because they have some desirable properties. Some of the desir-

able and undesirable properties of an estimate are described as follows.

10 R. A. Fisher: "On the mathematical foundations of theoretical statistics." Phil.

Trans. Roy. Soc, London, Ser. A, Vol. 222 (1922), pp. 309-368.
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188 MATHEMATICAL STATISTICS AND PROBABILITY

If we calculate a statistic, such, for example, as the mean, from a very large sample,

we are accustomed to ascribe to it great accuracy; and indeed it will usually, but not

always, be true, that if a number of such statistics can be obtained and compared, the

discrepancies among them will grow less and less, as the samples from which they are

drawn are made larger and larger. In fact, as the samples are made larger without

limit, the statistic will usually tend to some fixed value characteristic of the population,

and, therefore, expressible in terms of the parameters of the population. If, therefore,

such a statistic is to be used to estimate these parameters, there is only one parametric

function to which it can properly be equated. If it be equated to some other parametric

function, we shall be using a statistic which even from an infinite sample does not give

the correct value; it tends indeed to a fixed value, but to a value which is erroneous

from the point of view with which it was used. Such statistics are termed Inconsistent

Statistics; except when the error is extremely minute, as in the use of Sheppard's adjust-

ments, inconsistent statistics should be regarded as outside the pale of decent usage.

(R. A. Fisher: Statistical Methods for Research Workers. 11th ed. Oliver and Boyd,

London, 1950, p. 11.)

With this preference of Fisher not to use inconsistent statistics, I per-

fectly agree. When one intends to estimate a parameter 0, it is definitely

not profitable to use an inconsistent estimate.

Consistent statistics, on the other hand, all tend more and more nearly to give the

correct values, as the sample is more and more increased; at any rate, if they tend to

any fixed value it is not to an incorrect one. In the simplest cases, with which we

shall be concerned, they not only tend to give the correct value, but the errors, for

samples of a given size, tend to be distributed in a well-known distribution . . . known

as the Normal Law of Frequency of Error, or more simply as the normal distribution.

The liability to error may, in such cases, be expressed by calculating the mean value of

the squares of these errors, a value which is known as the variance; and in the class of

cases with which we are concerned, the variance falls off with increasing samples, in

inverse proportion to the number in the sample.

Now, for the purpose of estimating any parameter, such as the centre of a normal

distribution, it is usually possible to invent any number of statistics such as the arith-

metic mean, or the median, etc., which shall be consistent in the sense defined above,

and each of which has in large samples a variance falling off inversely with the size of

the sample. But for large samples of a fixed size the variance of these different sta-

tistics will generally be different. Consequently, a special importance belongs to a

smaller group of statistics, the error distributions of which tend to the normal distribu-

tion, as the sample is increased, with the least possible variance. We may thus separate

off from the general body of consistent statistics a group of especial value, and these

are known as efficient statistics.

The researches of the author have led him to the conclusion that an efficient statistic

can in all cases be found by the Method of Maximum Likelihood; that is, by choosing

statistics so that the estimated population should be that for which the likelihood is

greatest. (R. A. Fisher: Statistical Methods for Research Workers. 11th ed. Oliver

and Boyd, London, 1950, pp. 11-14).

Here, again, I agree unreservedly with Fisher that, when several con-

sistent estimates of the same parameter are available, all tending to be
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normally distributed, the one with the smallest variance is preferable to

others. Consequently, whenever the method of maximum likelihood yields

estimates which are both consistent and efficient, this circumstance (but not

the principle) may be considered an inducement to use the maximum likeli-

hood estimates. On the other hand, if and when the maximum likelihood

estimates are either inefficient or are outside "the pale of decent usage"

by being inconsistent, the suggestion to use them, merely because they

maximize the "measure of rational belief when we are reasoning from the

sample to the population," does not seem convincing.

However, are there cases where the maximum likelihood estimates are

either inconsistent or inefficient? Yes, there are. The conditions where the

maximum likelihood estimates are both consistent and efficient are stated

in the papers by Hotelling, Doob and Wald quoted above. If these condi-

tions are not satisfied, then, (i) the maximum likelihood estimates need not

be consistent and, (ii) even if they are consistent, they need not be efficient.

The following two examples demonstrating these possibilities are taken from

the joint publication of Dr. E. L. Scott and myself.11

(i) Consider an increasing sequence of s series of measurements xtj(i = 1,

2, • • •, s; ; = 1, 2, • • •, ni). Assume that all the measurements are mutually

independent and follow a normal law with the same variance <r2. However,

the quantity & measured in the ith series of measurements is different from

the quantity fy measured in the ;th series. This is exactly the case where

a fixed set of instruments is routinely used to measure different objects,

perhaps characteristics of different stars. The joint probability density of

all the observations is given by the formula

In these circumstances it is frequently important to estimate a, the standard

error of measurements appropriate to the instruments used.

In Fisher's terminology, the likelihood function of a set of parameters

means simply the probability density function (or a multiple of it) in which

the particular values of the observable random variables are fixed and the

parameters play the role of arguments. Thus, in the particular case con-

sidered, the likelihood function of the s + 1 parameters involved, namely,

£i, it, ••', & and a, is, say,

L = const. X (r e t i

Given any system of observed values x^ (for i — 1, 2, • • •, s; j = 1, 2, • • .,

n,-) of the random variables Xy, the maximum likelihood estimates of the

11 J. Neyman and Elizabeth L. Scott: "Consistent estimates based on partially con-

sistent observations." Econometrica, Vol. 16 (1948), pp. 1-32.
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190 MATHEMATICAL STATISTICS AND PROBABILITY

parameters are those values £,•, &, for which L is a maximum. You will

easily verify that the maximum likelihood estimates are

1 "*

I,. = — 23 xU - xi. for i'• = 1» 2, • • •, s

and

l# i=i J=i J

We shall be particularly interested in the simplest case where n,. = 2 for

i = 1, 2, • • ., s. Then the square of the maximum likelihood estimate 62

appears as a simple arithmetic mean,

~5(H

of quantities

W = ilka - *».)2 + (*a - xi.)%

The expectation of this quantity is

and the variance, say,

It follows that the variance of a2 is

a4

2s

and tends to zero as s is increased. Thus, as s is indefinitely increased, &2

tends in probability to its expectation a^/2 and, consequently, & tends in

probability not to a but to the quantity <y/y/2. It follows that, in this

particular case, the maximum likelihood estimate of a is inconsistent.

It may be said that the situation is trivial and that the bias in the estimate

can be easily corrected by multiplying the estimate by y/2. This is un-

doubtedly true but it is beside the point. It will be observed that the product

&\/2 is not the maximum likelihood estimate of v and that the bias in & does

not tend to zero as the number s is increased. This is just the circumstance

which the example is meant to illustrate.

(ii) In order to illustrate the possibility of the maximum likelihood estimate

being consistent without being efficient, we shall use an example, similar to

the above, where an increasing sequence of s series of measurements of the

same quantity are made but where the error variance may vary from one

series to the next. This is, for example, the case where £ stands for the velocity
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STATISTICAL ESTIMATION 191

of light measured by s different observers, each using different equipment.

As previously, we shall assume that all the measurements xa, for i = 1, 2,

' • •, s! 3 - 1, 2, . • •, ni, are independent and normally distributed about £

so that their joint probability density function is

a / i \ni "i

As you will have no difficulty in verifying, the maximum likelihood estimate

of £ is the root of the equation, say

where S2 has the usual meaning,

niSi2 = £ fai ~ xi.)2.

i-i

The equation determining the maximum likelihood estimate £ is complicated

but can be solved numerically.

In addition to equation (18), the paper just quoted studies a more general

equation, say,

* wAxi. - |)

obtained from (18) by substituting an arbitrary weight u>,. for n,.. It is shown

that, under mild restrictions regarding a., • and w,., the solution \ of (19) is a

consistent estimate of £ and that its variance is, say,

1 t~t <n2 \ni-2 /

V.(w)=- - +

i=l <»i M—1 <»i /

where U stands for the weighted mean,

* m: - 2 u>,

•

An,.-2

. -r 2

»=1 <r»

It follows that the system of weights Wi which minimize the variance of the

estimate \ are those for which
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192 MATHEMATICAL STATISTICS AND PROBABILITY

Wi

- U = 0, for i = 1, 2,

, °,

n{ - 2

or

Wi •» (n,. - 2) X const.

With these weights, equation (19) takes the form,

' (m - 2)(xi. - j)

£# + (*«• -I)2 °'

with the corresponding asymptotic variance of the solution equal to, say

V t i

opt. « „._ 9

On the other hand, the asymptotic variance of the maximum likelihood solu-

tion is

vt = Vopt. +

»=i a* \m - 2 /

and is, generally, greater than Fopt. The two variances Vopt and Ff coincide

only if, for all i = 1, 2, •••,«, the number nf of measurements forming the

ith series is the same, say n. Then U = n/(n - 2) and V = yopt. Further-

more, as s is indefinitely increased, the quotient Votlt/V% need not tend to

unity so that the asymptotic efficiency of I is less than that of £. To see this

you may wish to study more closely the simple particular case where <ji =

<r2 = • • • = a, = <r (though when estimating J we are not aware of this fact),

and where nzi-i = n' and n2i = n" for all i = 1, 2, • • •, «. It is also con-

venient to assume that s is an even number, say s = 1m. You will see that,

in this particular case the quotient Vovi/V\ has a value independent of m

and less than unity. Thus, it is shown that, even if the maximum likelihood

estimate is consistent, it need not be efficient and that, on occasion, consistent

and asymptotically normal estimates are easily constructed with variances

smaller than that of the maximum likelihood estimate. In the next con-

ference I shall attempt to show that smallness of the variance combined with

consistency and asymptotic normality of an estimate means a substantial

advantage in terms of consequences of the systematic use of a given estimation

procedure. For me personally, this constitutes a decisive argument against

the principle of maximum likelihood treated as a principle in the strict sense

of the word. The following quotation from Fisher seems to suggest that this

would also be his opinion.
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In the present paper I have been particularly concerned to show that all the proper-

ties of mathematical likelihood, which make it valuable, can be demonstrated inde-

pendently of any postulated value. From this it seems to me to follow that the concept

of likelihood could be eliminated completely from discussions of estimation, and these

discussions be adequately, though perhaps more cumbrously, carried out in other terms.

(R. A. Fisher: "The logic of inductive inference." Jr. Roy. Stat. Soc, Vol. 98 (1935),

p. 81.)

However, on the next page of the same paper we read:

The fact that likelihood has been an aid to thought in such progress as has so far

been made in the subject will suggest the advisability of using it for what it is worth,

even though, ultimately, we may find ourselves able to do better. That there are logical

situations in which the uncertainty of our inferences is expressible in terms of likelihood,

but not in terms of probability, is one solid step gained, even though more compre-

hensive notions may later be developed. (R. A. Fisher: "The logic of inductive infer-

ence." Jr. Roy. Stat. Soc, Vol. 98 (1935), p. 82.)

This passage requires comments from two different points of view. First,

I wish to point out that Fisher's presumption that the mathematical con-

cept of probability is inadequate when we are faced with the problem of

estimation is based solely on his (quite correct) realization that, when a

priori probabilities are not available (which he presumed to be always the

case and which I agree is almost always the case), then the formula of

Bayes is not applicable. Now, the general inadequacy of a concept is some-

thing which requires proof and the fact that one particular use of a concept

is inapplicable does not, by itself, prove that no other uses of the same

concept are possible with which to create an adequate basis for the theory

of estimation. In fact, as you will see in the next conference, a theory of

statistical estimation was developed entirely within the classical theory of

probability, a theory which uses no other concepts and is applicable without

any reference to probabilities a priori. For some questions which will be

discussed later, it is relevant that Fisher, when writing his paper of 1935,

was still of the opinion that the theory of probability by itself is not ade-

quate for treating problems of estimation.

My other comment concerns the utility of the concept of likelihood as a

measure of our confidence in the particular values of unknown parameters.

If one attempts to answer the question "Why does Fisher think that in

certain logical situations the likelihood is adequate to express our uncer-

tainty?" one is forced to refer to passages like the last but one quoted.

Here one finds contentions to the effect that the maximum likelihood esti-

mates have properties which make the likelihood valuable and "which can

be demonstrated independently of any postulated value." This demonstra-

tion appears to be on the ground of probability theory. Thus, the general

argument is that the likelihood is an adequate measure of our confidence

because the estimates obtained on this ground (or so Fisher thought) possess
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194 MATHEMATICAL STATISTICS AND PROBABILITY

certain desirable probabilistic properties. In these circumstances, the con-

tention that the likelihood is adequate in cases where the concept of prob-

ability is not appears baseless and the references to likelihood as a measure

of confidence contribute nothing but a certain amount of confusion. If

Fisher's presumption that the desirable probabilistic properties (consistency

and efficiency) are universally possessed by the maximum likelihood esti-

mates were correct, then, except for this confusion of thought, the notion

of the likelihood as a measure of confidence would not be harmful. How-

ever, as things stand, the notion of the new measure of confidence is regret-

table because it may mislead the credulous part of the consumers of statis-

tical theory.

All this applies to the notion of likelihood as a measure of confidence.

On the other hand, there is no reason to object to the use of the label

"likelihood function" applied to the probability density of the observable

random variables with fixed particular values of thesejvariables, considered

as a function of the parameters.

To sum up: whenever the conditions of a particular problem imply that

an unknown parameter is a random variable with a specified distribution

a priori, then the formula of Bayes provides a clear cut solution of the

problem of estimation; this solution, either in the form of a single estimate

or in the form of an estimating interval, classical or modernized, has a

simple interpretation in terms of frequencies of successes in estimating the

unknown parameter; when the conditions of the practical problem consid-

ered do not imply the a priori distribution of the estimated parameter, then

it is still "legitimate" to use the formula of Bayes; however, notwithstanding

the theorem of Bernstein-v. Mises and the attempts to estimate the a priori

distribution from past experience, such applications of Bayes' formula have

a doubtful frequency interpretation; finally, it appears unprofitable to

adopt the principle of maximum likelihood (and this also applies to the

principle of insufficient reason and to its more recent modifications) because

cases exist in which a strict adoption of this principle would lead to excess-

ively frequent large errors in estimation that are perfectly avoidable.

Part 2. Outline of the Theory of Confidence Intervals

(Based on a conference held in the auditorium of the United States Department of

Agriculture, April 9, 1937, 10 a.m., Dr. Frederick V. Waugh presiding.)

This morning I shall resume the outline of the problem of statistical esti-

mation at the point where I stopped yesterday. You will remember that

our discussion ended with the general conclusion that the classical approach

by means of the theorem of Bayes provides a satisfactory solution only in

the exceptional cases where the a priori distribution of the estimated param-
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eter is known. In all other cases we have at best approximations of un-

known precision, and at worst gross misconceptions dressed in impressive

phraseology.

My purpose this morning is to explain a new method of approach to the

problem of estimation especially designed for all cases in which the a priori

distribution of the estimated parameter is not known and where, therefore,

the estimated parameter may be treated as an unknown constant, not as a

random variable. The theory I am going to present is known as the theory

of confidence intervals. The first outline of this theory appeared in my

paper* of 1934. A more thorough treatment is found in two subsequent

memoirs, one in English 2 and the other in French.3 However, the first

reference to confidence intervals appeared in 1932 in a monograph4 of

Waclaw Pytkowski, then a student of mine, who applied the new theory

to the problems of estimation of various characteristics of small farms in

Poland.

When approaching the practical problem of estimation in cases where

no information about the a priori distribution is available, it is important

to realize that the corresponding mathematical problem should be stated in

a form which is essentially different from the form leading to Bayes' solu-

tion. The Bayes' solution answers the following question: (a) given that

the observable random variables Xi, X2, • • • ,Xn have assumed the specified

values xi, x2, • • •, xn, what is the probability,

P{a<01^b\ (X, = xi)(Xa = xt) . • • (X. = xn)\,

that the estimated parameter 0i will have a value contained between the

specified .limits a < b? As we have seen, the answer to this question

depends upon the a priori distribution of 01 and, if this distribution is not

known, question (a) cannot be answered. Thus, if a solution of the prac-

tical problem of estimation is to be based on the theory of probability, it

will be necessary to formulate a new problem, say (b), different from (a).

Problem (b) must be such that its solution will not depend upon the a priori

distribution of the estimated parameter and, at the same time, will give an

1 J. Neyman: "On the two different aspects of the representative method: the method

of stratified sampling and the method of purposive selection." Jr. Roy. Stat. Soc, Vol.

97 (1934), pp. 558-625.

2 J. Neyman: "Outline of a theory of statistical estimation based on the classical

theory of probability." Phil. Trans. Roy. Soc, London, Ser. A, Vol. 236 (1937), pp.

333-380.

3 J. Neyman: "L'estimation statistique traitee comme un probleme classique de pro-

babilite." Actwlites Scientifiques et Industrielles, No. 739 (1938), pp. 25-57.

4 Wactaw Pytkowski: "The dependence of the income in small farms upon their area,

the outlay and the capital invested in cows." Bibljoteka Pulawska, No. 34 (1932),

Warszawa, 59 pp. + 4 tables.
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196 MATHEMATICAL STATISTICS AND PROBABILITY

intelligible answer to the difficulty facing the practical statistician. It

appears that both the formulation of the new probabilistic problem (b) and

its solution are very simple and the fact that they were not found for a

long time must be ascribed to what Karl Pearson called "routine of thought"

and to attachment to the formula of Bayes. The scholars must have been

so impressed by Bayes' formula that they just did not think of thinking

about the problem in a different manner. However, as we shall see later,

the elements of the new idea can be discovered in the writings of many

earlier authors, beginning with Gauss. Unfortunately, these elements of

thought, for some reason, took quite a long time to grow and to crystallize.

We shall begin by recalling what exactly the practical statistician does

when he is faced with a problem of estimation and what exactly he needs

from the theory. In this, our attention will be primarily directed towards

the problem of estimation by interval and we shall have to return to the

ideas described in the early part of yesterday's conference.

We contemplate a situation in which the practical statistician is interested

in the value of the parameter 0i that appears in the probability density

function Pb(xi, #2, • • •, xn \ 8i, 02, •••, 08) of n observable random variables

Xi, X2, •", Xn. The analytical form of this probability density function

is known to the statistician, but the values of the parameters 9i, 82, • • •, 0,

are unknown, except that they are contained in some specified intervals,

say At < 8i < B< (i = 1, 2, • • •, s), finite or infinite. The practical statis-

tician is faced with the necessity of taking an action which should be

adjusted to the value of the parameter 8i. If he is the M.D. of the second

example in yesterday's conference, the action contemplated consists in

administering to the patient a dose of drug B, a dose which should be appro-

priately adjusted to the content 17 of substance A in the patient's blood.

If the practical statistician is concerned with the policy of the Department

of Agriculture, his contemplated action may consist in suggesting a pro-

vision in a forthcoming bill, a provision which should be adjusted to the

characteristic £ of the totality of farms in the United States as mentioned

in the first example of the last conference. Unfortunately, neither £ nor 17

can be evaluated exactly and the best the two practical statisticians can

do is to observe particular values of the random variables Xi, X2, • . •, Xn

and base their actions on these observations. In each case the assertion

about the true value of the unknown parameter 8i (£ in one case and r j in

the other) will be made in the same form,

S(xu x2,..., xn) ^e^ e(xu x2, . . ., xn), (i)

where 9 and 8 are functions of the observable random variables. Then the

practical statistician will adjust his actions as if it were known for certain

that the true value of 8i is contained between the limits indicated.
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STATISTICAL ESTIMATION 197

All human actions are subject to error and the actions of the practical

statistician cannot be an exception to the general rule. Thus the practical

statistician must be aware that, whatever function 0 and 0 he selects, his

assertions about the value of 0i will be erroneous from time to time. The

best he can hope to arrange is that the errors of estimation do not occur too

frequently. Also, he may have in mind a scale of importance of different

errors. For example, in a particular case an overestimate of the parameter

may be more important to avoid than an underestimate. Finally, the practi-

cal statistician is likely to desire that the difference 0 — 0 be, in general, as

small as possible. However, the most pressing need which the practical

statistician is likely to feel is that he be given the opportunity to select a

number a, 0 < a < 1, just as close to unity as he desires, and to determine a

pair of functions 0(Xi, X2, •••, Xn) and 0(Ar1, X2, • • ., Xn) such that their

use to estimate 0i in the manner described will yield correct results with the

long-run relative frequency equal to a or, if this is impossible, at least equal

to a.

As a general result of this discussion, we can now formulate the mathe-

matical problem (b) referring to the problem of estimating a parameter 0\

which in the modern form of theory of estimation takes the place of problem

(a) discussed above.

Problem (b). Given that the observable random variables E = (Xi, X2, • . .,

Xn) follow a distribution with the probability density function ps{xi, x2, •••,

xn\0\,02, - • •, 0,) depending on s parameters 0i,02, • . ., d„ the values of which

are unknown; given also that the parameter 0,- may have any value between the

specified limits Ai < 0,- < B< for i = 1, 2, • • •, s; finally, given a number a

between the limits 0 < a < 1, to determine two functions 0(xi, x2, . . -, xn) and

d(xi, x2, • • -, xn) defined over all possible systems of values x1, x2, • • •, xn of the

observable random variables, such that for all possible systems of values of the

parameters 0U 02, . • •, 0,

P{0(Xu X2, • • -, Xn) g 0i g 0(XU X2,---, Xn) | 0i, 02, •••, 0.} - a. (2)

It is essential to be entirely clear about the implications of the requirements

imposed on the two functions 0 and 0. You will notice the sign of identity

= appearing in formula (2). This sign emphasizes the requirement that the

probability on the left be equal to a irrespective of what value 0i takes be-

tween A\ < 0i < Bi, and irrespective of the values of the other parameters

02, 03, • • ", 0,. Thus, in particular, if unity, two and three are the possible

values of 0\, it is required from the functions 0 and 0 that

PffiXU X2, -,In)glg 0(XU X2, • • -, Xn) | (0! = 1), 02, • • -, 0,} m a,

P{S(Xi, X2, • • -, X.) g 2 S KXu X2, . • •, Xn) | (0i 0- 2), 02, • • •, 0.) m a,

P{i(Xu X», . • -, Xn) S 3 £ HXi, X2,---, Xn) | (0! - 3), 02, • • -, 0.} - a,
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198 MATHEMATICAL STATISTICS AND PROBABILITY

etc., where the identity signs refer to the possibility of variation in the values

of 02, 03, •", 0» and require that the probability on the left hand side keeps

the same value a, irrespective of changes in the values of 02, 03, • • ., 0«. In

other words, it is required of the functions 0 and 0 that, if 0i = 1, they bracket

unity with the prescribed frequency a. If 0i = 2, they are required to bracket

2 with the same frequency a, etc.

It is seen that our requirements regarding the functions 0 and 0 are tricky

and, at least at first sight, one does not know quite where to begin to satisfy

them. However, it was possible to prove that the problem of determining

0 and 0 reduces to another problem of a more familiar nature. Now let us

adopt the following definition. We denote by a a fixed number between zero

and unity.

// two functions $(Xi, X2, • • •, Xn) and 0(Xi, X2, •••, Xn) of the obserjable

random variables Xi, X2, •••, Xn, defined over all possible systems of values of

these variables, possess the property that, whatever the possible value of the para-

meter 0i, the probability (2) of $(Xi, X2, • • •, Xn) falling short of 0i at the same

time that 0(Xi, X2, • ••, Xn) is at least equal to 8i equals a identically in 02, 03,

• • •, 0„ then we shall say that 0 and 0 are the lower and the upper confidence

limits for 0i corresponding to the confidence coefficient a.

Furthermore, the interval [8(Xi, X2, • • •, Xn), 8(Xi, X2, •••, Xn)] will be

called the confidence interval for 0i corresponding to the confidence coefficient a.

In an earlier part of this book, we have used the terms sample point and

sample space. If xi, x2, • • •, xn are possible values of the observable random

variables Xi, X2, •••, Xn, then we say that the system of n numbers (xi, x2,

• • •, xn) determines (or represents) a possible sample point. The set of all

possible sample points is called the sample space and is denoted by W. If n

does not exceed 3, then the sample points and the sample space are easily

interpreted in the space of the appropriate number of dimensions and are

easy to visualize. If n is greater than 3, diagrammatic presentation is impossi-

ble but it is still convenient to speak in terms of points and spaces.

We shall now indicate how the search for confidence limits is reduced to the

search for certain regions in the sample space, called regions of acceptance.

For this purpose assume for a moment that the confidence limits 0 and 0

have already been found and correspond to a confidence coefficient a, previ-

ously selected, 0 < a < 1. Consider a space G (general space) of n + 1 dimen-

sions. Of the n + 1 axes of coordinates in this space, the first n will corre-

spond to the n observable random variables. In other words, the possible

values of Xi will be measured on axis Oxu the possible values of X2 will be

measured on axis 0x2, etc. On the last (the n + 1-st) axis of coordi-

nates in G, we shall measure the possible values of the estimated parameter

0i. We shall imagine that this last axis O0i is vertical. Now, select any

possible sample point (xi, x2, •••, xn). To this point, there will correspond a
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value 0{xi, x2, • • •, xn) of the lower confidence limit and a value S(xi, x2, • ••,

xn) of the upper confidence limit. Imagine that we plot the two points,

[xi, x2, .••, xn, 0(xi, x2, •••, xn)] and [xu x2, ••-, xn, 0(xu x2, ••-, xn)], and

connect them by a line. This line or, rather, this interval of line, call it

5(xi, x2, •••, xn), will represent the confidence interval corresponding to the

Figure 1

General space and confidence intervals

selected possible sample point. The situation is illustrated in Figure 1.

Imagine that this procedure is repeated for each and every possible sample

point. Now, take a possible value of 0u say 0\, and, in the general space G,

consider a horizontal plane 0t = 0\. Generally, this plane will cut some of the

confidence intervals and will miss others.

Denote by A{f)\) the set of all possible sample points such that the corre-

sponding confidence intervals are cut by the plane 0t = 0\. In other words,

the set Aifii) is the set of all possible sample points that satisfy the double

condition,

ifa, *2, ••-,*n) ^ Oi ^ *(*i, *2, • • •, *n)•

(3;
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200 MATHEMATICAL STATISTICS AND PROBABILITY

The set A(0i) so defined is called the region of acceptance corresponding to

0i'. Thus, if 8 and 8 are confidence limits for 0i corresponding to the con-

fidence coefficient a, then they determine a set, say A, of regions of acceptance.

Obviously, to each possible value of 8i there corresponds a region of accept-

ance.

The regions of acceptance A(8i) and their set A possess the following prop-

erties. The important property of every particular region of acceptance, say

A(fii), is that if a possible sample point (xi, x2, • • •, xn) falls within A(8i),

then the corresponding confidence interval 8(xi, x2, •••, xn) covers the value

9i of 0i and vice versa. This is an immediate consequence of the definition

of A(8i) by means of the double relation (3). In fact, in order to verify

whether or not a sample point (xi, x2', •••, xn') falls within A(8i), it is

sufficient to compute the values of 8 and 8 corresponding to this point and

see whether or not they bracket 8i. But this is exactly what we would do

in order to verify whether or not 5(xi', x2, •• •, xn') covers 8i. In order to

express this by a formula, we shall agree to use the letter C to denote the word

"covers" and the letter e to denote the phrase "is an element of" or "belongs

to." With this notation, we may write the identity of the two events,

[E eAW)] m [8(E) C9i'], (4)

where, as formerly, the letter E stands for the set of observable random

variables Xi, X2, • • ., Xn.

It follows from (4) that, whatever be the assumptions on which the prob-

abilities are computed,

P{EeA{h')} mP{l(flC9i'}. (5)

In particular, if we compute the probabilities on the assumption that 8i = 9i

while the other parameters 82, 83, • • •, 8, have arbitrary values, we shall find

P{E*AW) I 0/, 02, . • •, 0.) = P{6(E) C 9i' I h', h, . . ., 0,} * a,

because of the definition of confidence intervals. Thus, if 8i is a possible

value of 8i and A(8i) is the corresponding region of acceptance, then, what-

ever be the possible values of 82, 83, • • •, 8,,

P{EeA{ei')Iei',e2, • ••,*.} ma. (6)

Identity (6) represents the necessary condition which a region A(8i') must

satisfy in order to qualify as a region of acceptance corresponding to the

value 8i of the parameter 8i. In addition to this condition which applies

to each and every region of acceptance A(8i) taken separately, there are

important conditions which apply to the whole set A of regions of acceptance.

These conditions are intuitive and, therefore, I am going to enumerate them

without giving proofs. The proofs are given in detail in my paper of 1937,

already quoted.
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(I) The first condition that the set A of regions of acceptance must satisfy

is that the union of all regions of acceptance, corresponding to all possible

values of the parameter 8i, must coincide with the sample space W. In

other words, whatever possible sample point we take, say (*i, x2, • • •, xn),

there must exist at least one possible value of 0i such that its region of accept-

ance includes this particular sample point.

(II) The second necessary condition which the set A must satisfy is as

follows. Let (xi, x2',, •", xn') be an arbitrary possible sample point. Ac-

cording to the above condition (I), there exists at least one possible value

8i of 0i such that Aifii) contains (xi, x2', •••, xn'). Consider the set

S(xi, x2', • • •, xn') of all possible values of 0i such that the point (xi, x2,

• • •, xn') is contained within their regions of acceptance. Then condition

(II) states that the set S(xi', x2, •••, xn') fills a closed interval. This closed

interval extends from 8(xi, x2, •••, xn') to 8(xi, x2, • • •, x»/).

It is easy to see that condition (6), applying to each region A (0/) separately,

and conditions (I) and (II), applying to the set A of all regions A(8i), are

necessary and sufficient for the set A to be the set of regions of acceptance.

In other words, if we start with defining for each possible value 9i of 0i a

region A(8i') satisfying (6) and if we manage to adjust these regions so that

their set A satisfies conditions (I) and (II), then this set A determines con-

fidence intervals for $i corresponding to the confidence coefficient a. In fact,

suppose that (6) and (I) and (II) are satisfied by some regions, say 5(0/).

Let fa, x2, • • •, xn) be a possible sample point. According to (I) and (II),

there exists a closed interval of possible values of 9i, extending from some

value fi(xi, x2, •••, xn) to some other value f2(xi, x2, • • ., xn) such that, what-

ever 0i" between the limits, fi ^ 0/' g f2, the point (xi, x2, • • •, xn) belongs

to the region B(8i"). You will have no difficulty in verifying that the two

functions /i and f2 satisfy the definition of confidence limits for ft. In fact,

the interval between them, say A(xi, x2, ••., xn), covers any given value

$i of 0i whenever (xi, x2, • • •, xn) belongs to B(8i') and in no other case.

On the other hand, since B(8i) is supposed to satisfy condition (6), we have

P{E e 5(0/) | 0i',02, •••,*,} -o.

Thus,

P[AWC9i'\h.',9», •",*.) =P{EeB(8i')\8i', 02, •••,0«} ma.

In this way we come to the conclusion that, in order to determine a pair

of confidence limits, it is both necessary and sufficient to determine a

family A of regions of acceptance satisfying the above three conditions.

If the number s of unknown parameters involved in the probability density

function of the observable random variables exceeds unity, there are sub-

stantial difficulties in determining regions satisfying condition (6). Regions

satisfying this condition are called similar to the sample space and there is
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a substantial literature concerning them.5 On the other hand, if s = 1, the

problem of satisfying condition (6) is trivial. Conditions (I) and (II) are

also easy to satisfy and, generally, we have at our disposal a great variety

of confidence intervals corresponding to the same confidence coefficient. In

the simplest case, 8 = 1, the theory of confidence intervals is concerned

mainly with the problem of an appropriate choice among the many con-

fidence intervals. Naturally, in the case s > 1, the problem of choice also

exists and presents more difficulties. Limitations of time and space make

it impossible to discuss all of these matters in detail and I must refer you

to the literature already quoted. The best that I can do here is to work

out an example in order to illustrate the procedure of determining confidence

intervals. In so doing, we shall have occasion to discuss the interpretation

of confidence intervals and also to touch upon the problem of optimum.

The example I shall use is the one discussed yesterday. This is the

example of n observable random variables Xi, X2, •••, Xn, all independent

and having the same distribution with the probability density function equal

to 1/0 for 0 < x i 0 and zero elsewhere, 0 > 0 being the parameter to be

estimated. Yesterday I considered the particular case in which some defi-

nite information regarding 0 was.available. Namely, I assumed as known

for certain that (a) 0 cannot exceed the limits 0 < 0 § 1 and (b) the

frequency of cases where 0 falls within any interval (a, b) partial to (0, 1)

is represented by the integral,

X

b

mB™-1 dd = W

with a known value of m. In other words, I assumed in discussing this

example that the a priori distribution of 0 was known exactly.

Today, contrary to this, I shall study the problem of estimating 0 in

conditions where nothing whatever is known about its value except that it

6 See, for example, the following papers:

(a) J. Neyman and E. S. Pearson: "On the problem of the most efficient tests of

statistical hypotheses." Phil. Trans. Roy. Soc, London, Ser. A, Vol. 231 (1933), pp.

289-337.

(b) W. Feller: "Note on regions similar to the sample space." Stat. Research Memoirs,

Vol. 2 (1938), pp. 117-125.

(c) J. Neyman: "On a statistical problem arising in routine analysis and in sampling

inspection of mass production." Annals of Math. Stat., Vol. 12 (1941), pp. 46-76.

(d) H. Scheffe: "On the theory of testing composite hypotheses with one constraint."

Annals of Math. Stat., Vol. 13 (1942), pp. 280-293.

(e) E. L. Lehmann: "On optimum tests of composite hypotheses with one constraint."

Annals of Math. Stat., Vol. 18 (1947), pp. 473-493.

(f) P. G. Hoel: "On the uniqueness of similar regions." Annals of Math. Stat., Vol. 19

(1948), pp. 66-71.
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is a positive number. Of course, this unique assumption cannot be con-

sidered as any sort of limitation to the generality of the problem, since the

assumption 0 > 0 is implied by the nature of the assumed distribution of

the observable random variables, with their probability density function

positive within the interval (0, 0) and zero elsewhere.

Thus, the difference in the conditions of the problem of estimation con-

sidered yesterday and this morning is as follows: Yesterday I assumed

definite information regarding the distribution of the observable random

variables given the value of the parameter 0 and definite information regard-

ing the distribution of 0 considered as a random variable; this morning

I shall treat the problem of estimating 0 when no assumptions are made

regarding the a priori distribution of 0 except the one implied by the infor-

mation about the distribution of the observable random variables. Our

problem will be to construct a system of confidence intervals for 0 corre-

sponding to a preassigned confidence coefficient a, say a = .90, a = .95, etc.

Turning to the general theory outlined above, we must be clear about our

aims and about the steps we have to take to attain these aims. Our aim is to

define over the whole sample space W of the observable random variables two

functions 0(XU X2, • • •, Xn) and 0(XU X2, • • •, Xn) having the property that,

whatever be the (necessarily positive) value 0\ of the parameter 0, the prob-

ability that this value 0\ will be bracketed by 0 and 0 is equal to a,

P[0(Xu X2, . • -, Xn) £ 0! £ S(XU X2, .••,Xn)\0 = 01\=a. (7)

This, then, is our aim. The means to attain this aim, as indicated by the

foregoing theory, is to take the following steps:

(i) To determine the sample space W;

(ii) For each possible value 0t of 0, i.e. for each positive number 0\, to select

within W a region of acceptance A(fi\) satisfying condition (6) and such that

the totality A of such regions satisfy conditions (I) and (II).

Then the boundaries of the set <S(xi, x2, • • •, xn) will represent the values of

the functions 0 and 0 corresponding to the possible sample point (x^ x2,

I have already pointed out that in many cases not one but many dif-

ferent systems of regions of acceptance are available. Naturally, each

system of regions of acceptance determines a separate system of confidence

intervals corresponding to the same confidence coefficient a. In order to

illustrate this point, we shall select two systems of regions of acceptance,

A and B, and examine the corresponding confidence intervals.

According to the conditions of the problem, the probability density func-

tion of the n observable random variables, Xu X2, • . •, X„, is given by
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, 1

Pe(xu x2, • • •, xn I 8) = — for 0 < xi, x2, • . ., xn ^ 0

8

(8)

= 0 elsewhere,

where 8 is some unknown positive number. Thus, function (8) is positive

within a hypercube of n dimensions, with each dimension extending from

zero to 0. Since 0 > 0 may be any number, every point with positive co-

ordinates xi, x2, • • •, Xn is a possible sample point. It follows that, in this

case, the sample space W is the set of all points in n dimensions with their

coordinates x\ > 0, for i = 1, 2, • • •, n. This statement completes step (i).

Now, let us proceed to step (ii) and determine the system A of regions

of acceptance. For this purpose, fix for a moment an arbitrary possible

value 0i of 0, and denote by W(8i) the region partial to W determined by

the inequalities,

O<z,^0i, fort - 1,2, •.•,n. (9)

Should it happen that 8i > 0 is the true value of .8, then within W(0i) the

probability density function (8) of the observable random variables is positive

and equal to l/0in, while outside of W(8i) it is zero. With the notation

adopted, the symbol TT[0i(l - a)1/n] denotes a hypercube partial to W(0i)

with dimensions,

0 < x,. g 0i(l - a)Un, fori = 1,2, •••,n. (10)

As the region of acceptance, A(8i), corresponding to the selected possible

value 0i of 0, we shall select that part of the hypercube W(8i) which lies

outside of W [0i(l - a)1/n], with the inclusion of the outer boundary of the

latter. In other words, .A(0i) is defined to include every point (xi, x2, •••, xn)

which satisfies condition (9) but fails to satisfy the condition

0 < xi < 0i(l - a)1/n, for » - 1, 2, • • •, n. (11)

You will notice that (11) differs from (10) by the lack of the equality sign

of the right.

It is easy to see that region A (Oi) satisfies condition (6). To see

this, assume that 0i is the true value of 0 and compute the probability

P{E e A (0i) | 0i}. Owing to the fact that the distribution of E within W(0i)

is uniform on the assumption just made, the probability, P{E e A(0i) | 0i} is

equal to the volume of A(8i) divided by the volume of W(8i). According

to the definition of A(9x),

Volume of A(0i) = Volume of W(0i) - Volume of lf[0i(l - a)1/n]

= *i" - Ml - «)1/n]n

= «0in
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and it follows that

P[EeA(fii)\ti} = a

irrespective of the value 0i of 8.

Thus, for every possible value 8x of 8, we haVe defined a region A(8i)

satisfying condition (6). In order to determine whether or not these regions

can be regarded as regions of acceptance, we shall consider the set A of all

these regions and verify whether or not it satisfies conditions (I) and (II).

For this purpose it will be convenient to give the definition of A(8) an

analytical form. You will notice that, in order to determine whether a

given point (xi, x2, • • •, xn) with positive coordinates falls within A (8) or

not, it is not necessary to know the values of all of its coordinates. For this

particular purpose, it is sufficient to know the value x of the greatest of

the n coordinates xi, x2, • ••, xn. If

0(1 - «)1/n ^x%0, (12)

then the point (xi, x2, •", xn) belongs to A(8). Otherwise, it does not.

Thus, the double formula (12) represents the complete definition of the

region A (0) corresponding to any specified 8 > 0.

In order to verify that the set A satisfies conditions (I) and (II), fix an

arbitrary possible sample point, i.e., a point with arbitrary positive coordi-

nates xi, x2, •", xn, and determine the set S(xi, x2, •", xn) of values of 8

for which this point (xu x2, .••, xn) eA(8). As previously, let x denote the

greatest of the coordinates of the selected possible sample point. In order

that this point belong to A (8), it is necessary and sufficient that 8 satisfy

the double condition (12). Solving this condition for 8, we obtain the

double condition

IS9S(T^ (13)

which defines the set S{xi, x2, •••, xn). It is seen that the set S(xi, x2, • • •,

xn) extends over a closed interval beginning with x and ending with

s/(l - a)1/B.

It follows that the set A of regions A(8) satisfies conditions (I) and (II)

and that the corresponding confidence limits for 8 are

§(xi, x2, •••, xn) = x,

and

8(xi,x2, ••.,xn) =

(1 - a)iln

The length of the confidence interval corresponding to the given point

(xu x2, •••,xn) is, say,
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206 MATHEMATICAL STATISTICS AND PROBABILITY

1 - (1 - a)iln

8(xi,x2, •••,xn) = x.

- „W»

(l-«)

Let X be defined as the random variable whose value coincides with that of

the greatest of the random variables Xi, X2, • • •, Xn. Then the substitution

in 8 and 8 of X,. instead of x,. (for i - 1, 2, • • •, n) and of X instead of x, will

yield two random variables,

S(Xi, X2, • • •, Xn) = X,

(14)

X

B(Xu X2, • • •, Xn) = _ .

which have property (7) for all values of 8 > 0. In other words, whatever

may be the true value of 0 > 0, the probability that the two functions (14)

will bracket this value is exactly equal to a. Thus, the practical statistician

who makes a rule of asserting that 8 is a number between the particular values

of 8 and 8 as determined by observation is in a position exactly comparable

to that of a gambler betting on the outcome of a game of chance, the prob-

ability of which is equal to a which may be as close to unity as desired.

We shall use the symbol 8(E) to denote the confidence interval determined

by the two functions (14) and built by using system A of regions of acceptance.

Now, we shall proceed to define an alternative system B of regions of accept-

ance and the corresponding confidence interval, say A(E).

Fix a tentative positive value 8i of 8 and define B(8i) to include all points

of the sample space W such that the arithmetic mean x of their coordinates

differs from 0i/2 by not more than a quantity u(8i). Thus, B(8{) is defined by

the double relation,

¥i ~ «(*i) ^ * ^ ¥i + «(*i). (15)

Let X represent the random variable defined as the arithmetic mean of Xi,

X2, • • •, Xn. The motivation for the above choice of the region B(8{) is

that 8i/2 represents the expected value of X and also its most probable value.

The quantity w^) must be so determined as to satisfy condition (6). Since

a given sample point does or does not belong to B(8i) according as X does or

does not satisfy condition (15), it is obvious that

P{E e Bfr) I Oi) - P{\ I - ¥i1 ^ ufa) I Oil

It follows that the value of u(0i) can be found by using the probability density

function of X computed on the assumption that $i is the true value of 0.

The exact form of this probability density function was found by Laplace.

If n = 2, then it is very simple,
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Px(x | 00 = 4£ for 0 g x g to.

= 4(0i - x) for to ^ f = 0i,

= 0 elsewhere.

On the other hand, as n is increased, the expression for px(x | 0i) becomes

more and more complicated and soon becomes unmanageable. It happens,

however, that with very moderate values of n, say with n ^ 5, the probabilities

computed using the true probability density function are already difficult to

distinguish from their normal approximations. Since our purpose here is to

deal with the conceptual, rather than with the numerical side of the problem,

we shall use the normal approximation of the probability density of X. Using

the fact that, for each observable random variable X,-,

E(Xt | 00 = fa,

E(X? | 00 = W,

we

find that

°x?

= tW

an<

i it follows that

E(I | 00

= 2^1 ,

<r*2

0i

The normal approximation to the probability density function px(x | 00 is,

then, say

and the probability that X will differ from 0i/2 by not more than u(0{) is

approximately equal to, say,

(16)

P*{ \X-i0i | * «&)} =2J p/(x|0Odx.

After some easy algebra, this formula reduces to

P*{ | * - fa | * «&)} = ^f-f^e-^dt,

where

"(00 /

X(a) = ^— V 12n. (17)

01

The requirement that the probability (16) equal the preassigned value a,

less than unity, determines uniquely the value of X(a) which can be found in
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any table of the normal integral. For example, if a = .95, then \(a) = 1.96,

etc. Now equation (17) determines u(8{), namely,

X(a)

and it follows that, if we grant the normal approximation, region B(8i) is

defined by the double relation,

/l X(a) \ /l X(a) \

M 7==) ^x^eA-+—M=J. (18)

\2 V12n/ \2 Vl2n/

The region so defined will satisfy, approximately, condition (6). Denote

by B the set of all regions B(8i) corresponding to all possible values of 9i.

We shall now consider whether or not the set B satisfies conditions (I) and

(II). For this purpose, we fix an arbitrary sample point (xi, x2, •••, xn)

and seek the set, say Sb(xi, x2, •••, xn) of those values of 8 for which

(xi, x2, •", xn) e B(8). Using definition (18) of the region B(0), we find that,

for (xi, x2, •••, xn) e B(8), it is both necessary and sufficient that

|«g (19)

1 X(q)

2 Vl2n

Just as in the case of set A, it is seen that the set Sb(xi, x2, • • •, xn) covers a

closed interval (19). It follows that B is a set of regions of acceptance and

that the corresponding confidence limits are, say,

i(XuXa,..;Xn) =

X

1 X(«)

d(Xi, X2, • ••,Xn) =

2 V12n

(20)

1 X(«)

2 Vl2n

The interval between these two limits is the confidence interval A(E) corre-

sponding to the confidence coefficient a.

In order to bring out the delicate points of interpretation of formulae (14)

and (20), we will use numerical examples. Thus, we shall select a = .95

and substitute n = 12 [this particular value was selected in order to have less

trouble with the square root of 12n in (20)]. Then formulae (14) and (20)

reduce to

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

0
 1

5
:4

2
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

7
2

9
7

9
8

2
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



STATISTICAL ESTIMATION 209

0 = X, 0 = (1.284)X, 8(E) = (0.284)X, (21)

and

& = (1.508) 1, 0 = (2.970)^, A(E) = (1.462)J, (22)

respectively. In addition to the confidence limits, the lengths of the con-

fidence intervals are also given.

The correct theoretical interpretations of formulae (21) and (22) are

as follows.

Theoretical interpretation.—If the twelve observable random variables

Xi, X2, '••, Xi2 are completely independent and if each of them follows a

uniform distribution between zero and 0 > 0, then, whatever the actual

value 0i of 0 may be, the probability that the greatest X of the Xt will not

exceed 0i and, at the same time, that (1.284) X will not be less than 0i is

equal to the preassigned number a = .95,

P{X g 0i g (1.284)X | 0 = «i} = a = .95.

Similarly and under the same conditions, we have

P{(1.508)Z ^ 0i ^ (2.970)11 0 = 0i} = a = .95.

From this probabilistic interpretation, we obtain the following operational

interpretation.

Operational interpretation.—If the manner of obtaining the particular

values of twelve variables Xu X2, • • •, X12 is such that the assumption of

their complete independence and uniform distribution between zero and

some positive number 0 is satisfied with a satisfactory approximation, then

the long-run relative frequency of cases where X and (1.284)X bracket 0,

and also of those where (1.508)Z and (2.970)Z bracket 0, is approximately

equal ta a = .95.

Practical use of confidence intervals.—The above properties of confidence

intervals were deduced from the specified assumptions regarding the observ-

able random variables and, therefore, are the result of deductive reasoning.

Having understood the meaning of these results, we may now decide (and

this will be an act of will, not reasoning) to use these results in cases where

it is desirable to have our actions adjusted to the value of 0 which, unfor-

tunately, is unknown. Our decision could be to behave as if it were known

for certain that the true value of 0 lies between the lower and the upper

confidence limits computed from actual observations. The motivation

behind this rule of behavior is simple: taking into account the operational

interpretation of confidence intervals, we know that the long-run relative

frequency of cases where our actions will be adjusted correctly, is equal to

the number a which we have selected ourselves.

You will remember that this is just the requirement from a method of
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estimation which a practical statistician may be reasonably expected to

address to the theory.

I wish to emphasize the circumstance that the use of confidence intervals

involves the following phases: (i) formulation of the problem, (ii) deductive

reasoning leading to the solution of this problem and (iii) an act of will

to adjust our behavior in accordance with the values of the confidence limits.

In the past, claims have been made frequently that statistical estimation

involves some mental processes described as inductive reasoning. The fore-

going analysis tends to indicate that in the ordinary procedure of statistical

estimation there is no phase corresponding to the description of "inductive

reasoning." This applies equally to cases in which probabilities a priori

are implied by the conditions of the problem and to cases in which they are

not. In either case, all of the reasoning is deductive and leads to certain

formulae and their properties. A new phase arrives when we decide to

apply these formulae and to enjoy the consequences of their properties. This

phase is marked by an act of will (not reasoning) and, therefore, if it is

desired to use the adjective "inductive" in relation to methods of estimation,

it should be used in connection with the noun "behavior" rather than "rea-

soning." The concept of "inductive behavior" is discussed in some detail

in a book * in which it is treated as the motivational basis of tbe whole

theory of statistics.

The operational interpretation of formulae (21) and (22) can be easily

illustrated by a sampling experiment which you may wish to perform. In

this it is convenient to use one of the published tables of random numbers.7

As you know, ordinarily, tables of random numbers give groups of four

digits, each digit selected at random from 0,1, 2, • • •, 9 with particular care

that the consecutive selections be independent. Each such group can be

considered as a decimal fraction with four digits. However, there is always

the possibility of leaving out a digit or two or of adding a few more digits

borrowed from the next group in the same line.

If we decide on a fixed number of digits, for example on three, then the

consecutive groups in a column will produce an operational equivalent of

6 J. Neyman: First Course in Probability and Statistics. Henry Holt and Co., New

York, 1950, 350 pp.

7 See, for example, the following tables:

(a) L. H. C. Tippett: Random Sampling Numbers. Tracts for Computers, No. xv,

The University Press, Cambridge (Eng.), 1927, viii .f 26 pp.

(b) M. G. Kendall and B. Babington Smith: Tables of Random Sampling Num-

bers. Tracts for Computers, No. xxiv, The University Press, Cambridge (Eng.), 1939,

x + 60 pp.

(c) R. A. Fisher and Frank Yates: Statistical Tables for Biological, Agricultural and

Medical Research. Oliver and Boyd, London, 1938, 90 pp.
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repeated independent observations of a random variable, say Y, which is

discrete and is capable of assuming all values from .000 to .999, differing

by .001. Moreover, all these particular values are approximately equi-

probable. Obviously, Y, so denned, may be taken as an excellent ap-

proximation to the variable X distributed uniformly between zero and

unity. Thus, if we select 8 = 1, the twelve independent "observations" of

Xi, X2, •••, Xi2 can be read from any column of groups of three digits in

a table of random numbers.

However, we need not limit ourselves to the value 9 = 1. In fact, you

will find it instructive to select for your sampling experiment a set of, say,

100 different values (quite arbitrary) of 8. For example, one may be 8i = 1,

another 82 = .5, still another 83 = 2, etc. In order to obtain the simulated

twelve observations of random variables uniformly distributed between

zero and 8k ^ 1, it will be sufficient to take an appropriate number of digits

in the table, write them as though they formed a decimal fraction and then

multiply the result by 8k. Naturally, if you want all the "measurements"

of your "observable random variables" to be made with the same accuracy,

you will have to use one more digit for 8k = 10 than for 8h = 1, etc.

Incidentally, I have just said that it would be instructive to embark on

a sampling experiment with 100 arbitrarily selected 8's, all different. How-

ever, I am quite sure that after the fourth or fifth 8 you will become con-

vinced that the difference in the value of 8 does not influence the relative

frequency with which the confidence intervals cover the true 8 and that,

thereafter, you will use the simplest value of 8, namely, unity.

The sampling experiments are more easily performed than described in

detail. Therefore, let us make a start with 8i = 1, 82 = 2, 83 = 3 and 84 = 4.

We imagine that, perhaps within a week, a practical statistician is faced

four times with the problem of estimating 8, each time from twelve obser-

vations, and that the true values of 8 are as above although the statistician

does not know this. We imagine further that the statistician is an elderly

gentleman, greatly attached to the arithmetic mean and that he wishes to

use formulae (22). However, the statistician has a young assistant who

may have read (and understood) modern literature and prefers formulae

(21). Thus, for each of the four instances, we shall give two confidence

intervals for 8, one computed by the elderly Boss, the other by his young

Assistant.

Using the first column on the first page of Tippett's tables of random

numbers and performing the indicated multiplications, we obtain the follow-

ing four sets of figures.
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Table I

True 6

1st Sample

2nd Sample

02 = 2

3rd Sample

03 = 3

4th Sample

04 = 4

x\

.295

1.368

2.334

.090

Xi

.416

.408

2.923

1.204

Xt

.273

1.113

2.826

2.996

Xi

.056

.902

.354

2.075

Xi

.275

.430

.212

.479

x«

.587

1.383

1.905

1.563

XI

.926

1.648

.424

.438

Xi

.200

1.583

2.112

.727

29

.956

1.877

.973

2.483

zio

.824

.687

2.377

1.901

xn

.566

1.819

2.631

.194

X12

.101

1.845

.753

1.977

Arithmetic mean 2

.45625

1.25525

1.65200

1.34392

Greatest observation x

.956

1.877

2.923

2.996

Boss' conf. interval

.688 S 6 g

1.892 Sf l g

2.490 S 0 =:

2.026 g 8 g

1.355

3.728

4.907

3.992

Asst.'s conf. interval

.956 g 6 g

1.877 gfl g

2.923 g 0 S

2.996 S 0 g

1.227

2.409

3.752

3.846

The last two lines give the assertions regarding the true value of 0 made

by the Boss and by the Assistant, respectively. The purpose of the

sampling experiment is to verify the theoretical result that the long run

relative frequency of cases in which these assertions will be correct is,

approximately, equal to a = .95.

You will notice that in three out of the four cases considered, both asser-

tions (the Boss' and the Assistant's) regarding the true value of 0 are

correct and that in the last case both assertions are wrong. In fact, in this

last case the true 0 is 4 while the Boss asserts that it is between 2.026 and

3.993 and the Assistant asserts that it is between 2.996 and 3.846. Although

the probability of success in estimating 0 has been fixed at a = .95, the

failure on the fourth trial need not discourage us. In reality, a set of four

trials is plainly too short to serve for an estimate of a long run relative

frequency. Furthermore, a simple calculation shows that the probability

of at least one failure in the course of four independent trials is equal to

.1855. Therefore, a group of four consecutive samples like the above, with

at least one wrong estimate of 0, may be expected one time in six or even

somewhat oftener. The situation is, more or less, similar to betting on a

particular side of a die and seeing it win. However, if you continue the
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sampling experiment and count the cases in which the assertion regarding

the true value of 8, made by either method, is correct, you will find that the

relative frequency of such cases converges gradually to its theoretical value,

a = .95.

Let us put this into more precise terms. Suppose you decide on a num-

ber N of samples which you will take and use for estimating the true value

of 0. The true values of the parameter 8 may be the same in all N cases

or they may vary from one case to another. This is absolutely immaterial

as far as the relative frequency of successes in estimation is concerned. In

each case the probability that your assertion will be correct is exactly equal

to a = .95. Since the samples are taken in a manner insuring independence

(this, of course, depends on the goodness of the table of random numbers

used), the total number Z(N) of successes in estimating 8 is the familiar

binomial variable with expectation equal to Not and with variance equal

to Na(l - a). Thus, if N = 100, a = .95, it is rather improbable that the

relative frequency Z(N)/N of successes in estimating 8 will differ from a

by more than

a(l - a) = .042.

N

This is the exact meaning of the colloquial description that the long run

relative frequency of successes in estimating 8 is equal to the preassigned a.

Your knowledge of the theory of confidence intervals will not be influ-

enced by the sampling experiment described, nor will the experiment prove

anything. However, if you perform it, you will get an intuitive feeling of

the machinery behind the method which is an excellent complement to the

understanding of the theory. This is like learning to drive an automobile:

gaining experience by actually driving a car compared with learning the

theory by reading a book about driving.

Among other things, the sampling experiment will attract attention to

the frequent difference in the precision of estimating 8 by means of the two

alternative confidence intervals (21) and (22). You will notice, in fact,

that the confidence intervals based on X, the greatest observation in the

sample, are frequently shorter than those based on the arithmetic mean X.

If we continue to discuss the sampling experiment in terms of cooperation

between the eminent elderly statistician and his young assistant, we shall

have occasion to visualize quite amusing scenes of indignation on the one

hand and of despair before the impenetrable wall of stiffness of mind and

routine of thought on the other.8 For example, one can imagine the con-

8 Sad as it is, your mind does become less flexible and less receptive to novel ideas

as the years go by. The more mature members of the audience should not take offense.

I, myself, am not young and have young assistants. Besides, unreasonable and stubborn
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versation between the two men in connection with the first and third samples

reproduced above. You will notice that in both cases the confidence interval

of the Assistant is not only shorter than that of the Boss but is completely

included in it. Thus, as a result of observing the first sample, the Assistant

asserts that

.956 ^ 0 ^ 1.227.

On the other hand, the assertion of the Boss is far more conservative and

admits the possibility that 0 may be as small as .688 and as large as 1.355.

And both assertions correspond to the same confidence coefficient, a = .95!

I can just see the face of my eminent colleague redden with indignation and

hear the following colloquy.

Boss: "Now, how can this be true? I am to assert that 6 is between .688 and 1.355

and you tell me that the probability of my being correct is .95. At the same time,

you assert that 8 is between .956 and 1.227 and claim the same probability of success in

estimation. We both admit the possibility that 8 may be some number between .688

and .956 or between 1227 and 1.355. Thus, the probability of 8 falling within these

intervals is certainly greater than zero. In these circumstances, you have to be a nit-wit

to believe that

P{.688 SJS 1.355} = P{.688 g 6 < .956) + P{.956 g«g 1.2271

+ P{1.227 <«S 1.3551

= P{.956 g 6 g 1.227}."

Assistant: "But, Sir, the theory of confidence intervals does not assert anything

about the probability that the unknown parameter 6 will fall within any specified limits.

What it does assert is that the probability of success in estimation using either of the

two formulae (21) or (22) is equal to a."

Boss: "Stuff and nonsense! I use one of the blessed pair of formulae and come up

with the assertion that .688S0S 1.355. This assertion is a success only if 8 falls within

the limits indicated. Hence, the probability of success is equal to the probability of

8 falling within these limits ."

Assistant : "No, Sir, it is not. The probability you describe is the a posteriori prob-

ability regarding 8, while we are concerned with something else. Suppose that we con-

tinue with the sampling experiment until we have, say, N = 100 samples. You will see,

Sir, that the relative frequency of successful estimations using formulae (21) will be

about the same as that using formulae (22) and that both will be approximately equal

to .95."

I do hope that the Assistant will not get fired. However, if he does, I

would remind him of the glory of Giordano Bruno who was burned at the

stake by the Holy Inquisition for believing in the Copernican theory of the

solar system. Furthermore, I would advise him to have a talk with a physi-

cist or a biologist or, maybe, with an engineer. They might fail to under-

individuals are found not only among the elderly but also frequently among young

people.
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stand the theory but, if he performs for them the sampling experiment

described above, they are likely to be convinced and give him a new job.

In due course, the eminent statistical Boss will die or retire and then .

Now, let us forget the Boss and his Assistant and return to the important

problem of the varying length of confidence intervals. By inspecting formulae

(21) and (22), it is easy to see that for certain sample points the confidence

interval (22), based on the arithmetic mean X, is shorter than the correspond-

ing confidence interval (21). When the greatest observation X is fixed, the

arithmetic mean H of twelve positive observations may be arbitrarily close

to X/12. Thus, the length of the corresponding confidence interval (22) may

approach the lower bound of

(1.462)X

(.122)Z < 6(E) = (.284)X.

This circumstance makes it intuitively clear how it happens that the use

of either formulae (21) or (22) insures the same frequency of successes.

However, if you perform the sampling experiment described above, you

will notice that in the great majority of cases the confidence intervals com-

puted from (21) are substantially shorter than those computed from (22).

This empirical result suggests that, from the point of view of precision in

estimating 0, formulae (21) are preferable to formulae (22). However,

it is possible that some third pair of confidence limits can be invented, cor-

responding to the same confidence coefficient, which will give still better

precision in estimating 0.

We are brought, thus, to the problem of a choice among the various pos-

sible confidence intervals and you will appreciate that this problem is of

considerable practical importance and of great theoretical interest. Our

first difficulty in attacking the problem consists in formulating it so that

it has a definite mathematical meaning. In the case of known a priori dis-

tributions, the situation was simple because the Bayes' estimating interval

corresponding to any given sample point is selected independently from

those corresponding to other possible sample points. Therefore, we could

simply seek that estimating interval which is shortest. With confidence

intervals the situation is different because, instead of dealing directly with

confidence intervals corresponding to particular sample points, we deal with

regions of acceptance and the confidence interval corresponding to any given

sample point depends upon the way in which the regions of acceptance are

piled above this point. By shifting the regions of acceptance, it is possible

to reduce to a minimum the length of the confidence interval corresponding

to a specified sample point. However, it is intuitively clear that by so

doing we shall increase the length of a great many other confidence intervals

which correspond to different sample points. Thus, it appears that the
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problem of "optimum" must concern not the length of particular confidence

intervals taken separately, but the totality of these intervals.

Figure 2

3ayes' Estimating Intervals

and Confidence Intervals

The problem I formulated in my paper of 1937 is based on the following

considerations. The desirable property of a confidence interval is that it

covers the true value of the estimated parameter 0 with the preassigned

frequency a. In so doing, the confidence interval also covers an infinity of
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"false" values of 0. This, however, is a nuisance and should occur as rarely

as possible. When one starts from this point of view, it is easy to give an

exact definition of the shortest confidence intervals.

Figure 3

Bayes' Estimating Intervals

and Confidence Intervals

Confl/eTenee Interval

1.0 1.1 1.2

Definition.—The confidence interval 8(E) for estimating the parameter 0,

corresponding to the confidence coefficient a, is called the shortest if, what-

ever be the alternative confidence interval A (25) corresponding to the same

confidence coefficient a and whatever be two possible values 0i and 02 of

the estimated parameter 0,

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

0
 1

5
:4

2
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

7
2

9
7

9
8

2
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



218 MATHEMATICAL STATISTICS AND PROBABILITY

P{8(E) Cfli | 02] ^ P{A(E) Cfli | 02\.

Operationally, this means that, whatever be the true value 02 and whatever

be the "false" value 0U this false value will be covered by 8(E) not more

frequently than it will be covered by A(E).

It can be shown that the confidence interval (21) is the shortest in the

sense of this definition. As you see, the "shortness" of the confidence inter-

val 8(E) considered as a random interval used for purposes of estimation

is consistent with the fact that for some particular sample points the length

of interval (21) exceeds that of interval (22).

Unfortunately, in a great many cases of practical importance the shortest

confidence intervals do not exist and we are forced to look for other possi-

bilities. The study of these questions is an interesting and important part

of the theory of estimation. However, its discussion would lead us far

afield and all that I can do here is to refer you to my papers of 1937 and

1938 already quoted. At the present moment we will return to the problem

of interpretation of confidence intervals and of Bayes' estimating intervals.

Needless to say, a clear understanding of the difference between these two

approaches to the problem is of fundamental and immediate importance to

everyone concerned with estimation.

Figures 2 and 3 refer to the example of estimating 0, the only parameter

involved in the probability density function (8) of n = 12 independent

variables XU X2, • • •, Xn all uniformly distributed between zero and 0 > 0.

The two figures show confidence intervals (21). Thus the quantity meas-

ured on the axis of abscissae is X, the greatest of the twelve observations.

The quantity measured on the axis of ordinates is 0. The heavy diagonal

line has the equation 0(X) = X and represents the lower confidence limit

for 0. The dashed straight line above represents the upper confidence limit

0(X) = (1.284)X.

Thus whatever be the observed value of X, the corresponding confidence

interval for 0 can be read directly from either of the two figures. The con-

fidence intervals would be used when nothing is known about the a priori

distribution of 0 and the assertions regarding the true value of 0 obtained

from the graphs will be true with a long run relative frequency equal to .95.

Figures 2 and 3 also display the classical Bayes' estimating interval in

addition to the confidence intervals. On both graphs the Bayes' estimating

intervals correspond to an a priori distribution of 0 of the same form,

¥(0) = wffn-1 for 0 < 0 g 1,

(23)

= 0 elsewhere.
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However, in Figure 2 the value of m is m = 12.1 while in Figure 3, it is

m = 4.5. In both cases, the lower end of the classical Bayes' estimating

interval coincides with the lower confidence limit, g(X) = X. On the other

hand, the upper end of the classical Bayes' estimating interval is given by,

say,

0B(X) = [X"-"(l - a) + a]1/(m-B),

where a = .95 is the chosen confidence coefficient. The estimation of 0

may consist in observing X and in asserting that 0 lies within the corre-

sponding Bayes' estimating interval. The long run relative frequency of

successes will again be equal to a.

Upon inspecting the two figures, you are likely to have a feeling of sur-

prise. Figure 2, especially, is striking because the Bayes' estimating inter-

vals are so much wider than the corresponding confidence intervals over a

very wide range of values of X. And yet, the Bayes' intervals are the

shortest possible adjusted to the a priori distribution of 0 of the particular

kind indicated while the confidence intervals which assure the same long

run frequency of successes in estimation will give this frequency quite irre-

spective of whether the a priori distribution is that visualized in Figure 2

or any other. Only if X > .77 (approximately) are the confidence intervals

wider than the Bayes' intervals and then the difference in width is much

milder than that, in favor of confidence intervals, for X < .77.

The answer is that, owing to the special form of the a priori distribution,

larger values of 0 will occur much more frequently than smaller ones and

this is reflected also in the absolute distribution of X. This distribution is

easily obtained as follows. We begin by writing the joint distribution of

0 and X,

Pe,x(fi, x) = mngm-n-1xn-1 for 0 < x ^ 1 and x ^ 0 g 1

= 0 elsewhere.

The absolute distribution of X is obtained by integrating

X+0° mn

p$fX(e, x)d0 = (xn_1 - x"*-1"* for 0 < x <, 1

_w m — n

(24)

= 0 elsewhere.

It is easy to verify that, if m and n exceed unity, this probability density

vanishes at x = 0 and x = 1 and has its maximum at

-(—)

\m- 1/
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If m = 12.1 and n = 12, then this value exceeds .9. Thus in the situation

represented in Figure 2, the most frequent values of X are close to unity

and, consequently, the confidence intervals most frequently used will exceed

the corresponding Bayes' shortest estimating intervals. A similar situation

corresponds to Figure 3.

This reasoning explains only one aspect of the situation. To understand

fully the other aspect we have to visualize the interpretation of the Bayes'

estimating intervals in terms of frequencies. This may be done with refer-

ence to general human experience or, in order to speak in more concrete

terms, with reference to a sampling experiment appropriately arranged so

as to satisfy the hypotheses underlying Figure 2 and Figure 3.

It is essential that one makes the point clear that a sampling experiment

which might illustrate all the properties of Bayes' estimating intervals is

much more complicated than the one discussed above whose purpose was

to illustrate the working of confidence intervals. In dealing with confidence

intervals we were at liberty to select an arbitrary set of positive numbers

and to consider these numbers as the true values of 0. Then it was an easy

matter to use the tables of random numbers in order to obtain a sample of

twelve observations following the distribution (8). Now we have to begin,

as it were, earlier and create a machinery for obtaining a set of consecutive

values of 0 following the a priori distribution appropriate to Figure 2 and/or

Figure 3. No arbitrary selection of the true O's is allowed.

After this point has been settled in one way or another (those who are

familiar with the arranging of sampling experiments will have no difficulty

with this step), we proceed to obtain sampled values of X\, X2, . • •, Xt2,

corresponding to each value of 0 already determined. As in the case of

confidence intervals (21), we shall be interested not in all twelve sample

values but only in the greatest of them, X. The frequency distribution of

this variable will correspond to the probability density (24). Now suppose

that the first sample ascribes to X the value, x = .500. The Bayes' estimat-

ing interval corresponding to this value, as read from Figure 2, extends from

.500 to .967, approximately. In order to interpret this interval (.500, .967)

in detail, we would have to continue the sampling experiment for quite some

time until we observed x = .500 another time, then still another time, etc.

In short, for the interpretation of the Bayes' interval (.500, .967), we need

a long sequence of outcomes of the sampling experiment in which the

greatest of the twelve observations is equal to .500. It is obvious that the

actual performance of this experiment is impractical unless it is performed

using the most modern high speed computing machines. However, this

should not preclude us from discussing it.

Imagine that, after we have repeated the sampling experiment a few

million times, each time first determining a fresh value of 0 in accordance
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with probability density function (23) and then getting the twelve values

of the X'a, we have finally selected a set, say S(.5), of some 100 cases in

which the value of X was exactly equal to .500. This set, S(.5), is basic

for the interpretation of the Bayes' interval (.500, .967). Naturally, the

values of 0 corresponding to all experiments in S(.5) will be different in

general and we shall visualize the distribution of these values. In accord-

ance with what was explained in yesterday's conference, this distribution

will correspond approximately to the a posteriori probability density func-

tion,

m — n

1 — xm^

= 0 elsewhere,

with x = .500 and the interval (.500, .967) will be found the shortest of all

those which include 95 per cent of the values of 0.

This is the precise interpretation of the Bayes' shortest estimating inter-

vals. If you compare the foregoing with our previous discussion, you will

see that confidence intervals do not have the property just described. In

fact, if we take under consideration any particular confidence interval, e.g.

the confidence interval (.500, .642) corresponding to the same value of

x = .500, the relative frequency of experiments forming the set S(.5) in

which .500 ^ 0 i .642 will depend on the a priori distribution of 0 and, in

general, will not be equal to .95. On the other hand, whatever be the

a priori distribution of 0, the assertion regarding the value of 0 in any

particular case, based on the confidence interval, has the probability equal

to a = .95 of being correct.

Before concluding, we shall make a very brief review of early papers of

several authors in which one can discern the germs of the theory of con-

fidence intervals.

The idea of estimation by confidence intervals and by confidence regions

is very clearly and faultlessly stated in a few last sentences of a paper by

Hotelling9 published in 1931. However, the statement of this idea was not

followed by an attempt to develop a systematic theory. The relevant pas-

sage is very brief and its brevity must have contributed to its being over-

looked by many readers including myself. In order to give full credit to

Hotelling, I wish to reproduce the passage verbatim.

To means of a single variate it is customary to attach a "probable error," with the

assumption that the difference between the true and calculated values is almost cer-

tainly less than a certain multiple of the probable error. A more precise way to follow

'Harold Hotelling: "The generalization of Student's ratio." Annals of Math. Stat.,

Vol. 2 (1931), pp. 360-378.
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out this assumption would be to adopt some definite level of probability, say P = .05,

of a greater discrepancy, and to determine from a table of Student's distribution the

corresponding value of t, which will depend on n; adding and subtracting the product

of this value of t by the estimated standard error would give upper and lower limits

between which the true values may with the given degree of confidence be said to lie.

With T an exactly analogous procedure may be followed, resulting in the determination

of an ellipse or ellipsoid centered at the point Ji, fa, •••, {„. Confidence corresponding

to the adopted probability P may then be placed in the proposition that the set of true

values is represented by a point within this boundary. (Harold Hotelling: Annals of

Math. Stat., Vol. 2, pp. 377-378.)

Next in turn, in the reverse chronological order, it would be necessary to

refer to papers by R. A. Fisher concerned with the so-called "fiducial argu-

ment." The early papers of Fisher given to this subject definitely suggest

the idea of confidence intervals. Later on, however, there appeared to be

a substantial difference between the two theories. The relevant literature

is extensively discussed in the next part of the present chapter.

Before either Hotelling or Fisher, the idea of confidence intervals is found

in papers by E. B. Wilson10 and Stanislas Millot.11 Both authors are con-

cerned with estimating the probability p of success postulated to be con-

stant in n completely independent trials in which the success occurred

exactly X times. Working independently, the two authors used similar

arguments to deduce the approximate confidence interval for p, based on

the assumption that the distribution of the standardized binomial variable,

say

X - np

Vnp(l - p)

is approximately normal. However, the conceptual background of the two

papers is essentially different from the statement of the problem of con-

fidence intervals and is limited to the view that it is reasonable to use the

formula deduced. Wilson explains this clearly in his more recent paper12

given to the same problem. In addition, the paper of Millot involves obvious

misunderstandings which it may be useful to discuss. For this purpose, we

shall deduce the formulae for the (approximate) lower and upper confidence

limits for p.

We begin by postulating that Y = X/n is a normal variable with expec-

tation p and variance p(l - p)/n, where p stands for the unknown true

10E. B. Wilson: "Probable inference, the law of succession, and statistical inference."

Jr. Amer. Stat. Assoc, Vol. 22 (1927), pp. 209-212.

11 Stanislas Millot: "Sur la probability a posteriori." Comptes Rendus, Paris Acad-

emy, t. 176 (1923), pp. 30-32.

"E. B. Wilson: "On confidence intervals." Proc. Nat. Acad. Sc, Vol. 28 (1942),

pp. 88-93.
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probability of success and may be any number 0 < p < 1. Following the

steps indicated in the earlier part of this conference we proceed to construct

a system A of regions of acceptance, say A(p*). Obviously, the sample

space of the variable Y is limited to the interval 0 % Y § 1. Fix any pos-

sible value p' of p, and determine in W a region A (p') satisfying condition

(6). Considerations of simplicity suggest that the region A(p') be repre-

sented by an interval, say from a(p') to b(p') with

0 g o(p') g 6(p') g 1.

Then condition (6) implies that, if p' happens to be the true value of p,

P{a(p') ^ Y g b(p') | p = p'} = a,

where a is the adopted confidence coefficient. Using the postulate that Y

is a normal variable, we can rewrite this condition as

V2irp'(l - p') J«W

(25)

Obviously, equation (25) does not determine o(p') and b(p') uniquely. In

fact, it is possible to select a(p') arbitrarily, provided the value selected

is not too large, and then to determine b(p') to satisfy condition (25).

Considerations of simplicity suggest that a(p') and b(p') be symmetrically

placed about p' so that

a(p') = p'-A,

b(j>') =p' + A.

Now, if X satisfies the condition

1 /-+x

then

' - P')

e~x'/2 dx = a.

N n

and the region of acceptance A(p') is defined by the double relation,

, /p'(1-p0^w , _ /?'(! - p')

P-lyj——SYZp' + Xyj—— -

We shall adopt this definition of A(p') for every possible value p' of p

and test whether or not the set A of all such regions satisfies conditions (I)

and (II). For this purpose we fix an arbitrary possible value y of Y and

look for the values p for which y t A (p). The search reduces to the solution
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with respect to p' of the two inequalities defining region A (pr). If we drop

the primes and perform easy algebra, we find

/P(l - P)

Y2-2pY + p2£\2-

or

„.(1+^-2p(r+^)+r,s„.

(26)

Since the coefficient of p2 is positive, the left hand side of inequality (26)

is negative only if the two roots of the quadratic are real and the value of p

is contained between the smaller and the larger of these roots. Denoting

the roots by pi(Y) and p2(Y), we have

X2

^v^-

X2

Y + w-

.F)+-

in

2n

PiU) —

X2

1+-

n

X2

Vnf^

X2

2ra

Y)+-

in

PaK1) —

X2

1 + -

n

and it is seen that they are always real. Thus, the set of values of p for

which YtA{p) extends over the closed interval,

Pi(F) g p g p2{Y).

Consequently, the regions A(p) are regions of acceptance and pi(Y) and

p2 (Y) are a pair of confidence 13 limits for p, corresponding to the confidence

13 Incidentally, a closer analysis shows that these limits possess the defect of being

"biased." While covering the "true" value with the prescribed relative frequency o, the

confidence interval [pi(F), p2(Y)] covers certain "false" values of p even more fre-

quently. This fact is due to the adopted symmetry of regions of acceptance. By drop-

ping the requirement of symmetry, it is possible to obtain somewhat "shorter" confi-

dence intervals corresponding to the same confidence coefficient and covering the false

values of p less frequently than the true value. However, this advantage of the un-

biased confidence intervals is, in this case, not very important. When n is large, then
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coefficient a. Thus, if we use the formulae for Pi(Y) and Pi(Y) to make

assertions regarding the true value of p in the form pi(Y) spgp2(Y),

the probability of this assertion being true is (approximately) equal to a.

In connection with confidence intervals for the binomial p, I should bring

to your attention the fact that Clopper and Pearson 14 have produced con-

venient graphs from which these intervals can be read directly. I should

also like to note that, if one does not assume n large enough for the validity

of the normal approximation, then one has to deal with an extended notion

of confidence intervals in which the probability of the true value of the

parameter being covered is at least equal to (instead of equal or approxi-

mately equal to) the chosen confidence coefficient. The method of construct-

ing such intervals is discussed and illustrated in the joint publication15 of

Matuszewski, Supinska and myself.

As mentioned, the formulae for pi(Y) and Pz(Y) were deduced both by

E. B. Wilson and by Stanislas Millot. However, Millot interprets them as

a result relating to the probability a posteriori, with which, in reality, these

formulae have no connection whatever. Moreover, the following passage

translated from Millot's note indicates that his idea regarding the opera-

tional properties of the interval [pi(Y), p2(Y)] were in disaccord with the

basic concepts of confidence intervals.

Millot writes:

It is useful to record the results of the various experiments made, because, frequently

but to a variable extent, the study of partial series of such experiments may allow us

to reduce the uncertainty regarding the true value of the probability p. To each partial

series, as well as to the total series of observations there corresponds an interval for p,

the boundaries of which are determined from formulae (5). Evidentally, the probability

p is contained in the common part of all the intervals thus obtained.

The statement "Evidentally, the probability p is contained in the com-

mon part of all the intervals thus obtained," has no probabilistic meaning

and, therefore, has no room within the theory of confidence intervals. If

we admit the possibility of a lapsus linguae and try to reword this statement

in conformity with the concepts of confidence intervals, we would obtain

something like this: "The probability that the common part of all intervals

thus obtained will bracket the true value of p is even greater than the

the difference between the unbiased intervals and the ones deduced here is insignificant.

On the other hand, when n is small, then the normal approximation which we used here

is inadequate.

14 C. J. Clopper and E. S. Pearson: "The use of confidence or fiducial limits illustrated

in the case of the binomial." Biometrika, Vol. 26 (1934), pp. 405-413.

15T. Matuszewski, J. Neyman and J. Supinska: "Statistical studies in questions of

Bacteriology. Part I. The accuracy of the 'Dilution Method.'" Supplement, Jr. Roy.

Stat. Soc, Vol. 2 (1935), pp. 63-S2.

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

0
 1

5
:4

2
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

7
2

9
7

9
8

2
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



226 MATHEMATICAL STATISTICS AND PROBABILITY

confidence coefficient a." However, even this interpretation does not bring

the idea of Millot within the framework of confidence intervals. In the

latter, the probability of bracketing the true value of the parameter applies

to a completely specified rule, i.e., to a pair of functions, such as pi(Y) and

p2(Y), defined for all possible values of the observable random variables.

As I have shown this morning, this probability coincides with the prob-

ability of the sample point falling within the region of acceptance corre-

sponding to the true value of the parameter estimated. Also, I have shown

that the regions of acceptance are uniquely determined by the confidence

limits. Now, while implying what should be our assertion regarding p

when the several confidence intervals overlap, Millot does not say a word

about this assertion when the confidence intervals fail to overlap. Thus,

Millot's estimating intervals are not defined for all combinations of values

of the observable random variables and, therefore, the regions of acceptance

are not defined. As a result, without further specification of the estimation

procedure contemplated, it is impossible to assert anything about the prob-

ability that it will lead to a correct assertion.

In addition to the note discussed, Millot has published a few more notes

in the same volume of Comptes Rendus. However, the general idea behind

these notes diverges more and more from the basic concept of confidence

intervals expressed at the beginning of the first note.

If we go further back, we can trace the idea of confidence intervals, very

vaguely expressed, in the writings of "Student." Also, although no explicit

statement has been found, it is possible that the idea of confidence intervals

may have been behind the publications of Markoff and even of Gauss,

concerned with what is now called "best unbiased estimates."

This brings us to the question of how the use of confidence intervals can

be considered a justification for the use of best unbiased estimates and of

maximum likelihood estimates (when they are consistent and efficient).

Actually, the argument is in favor of a broader category of estimates,

having the property that they are asymptotically normal about the true

value of the parameter with minimum asymptotic variance. This point of

view was brought out in my paper of 1934 already quoted.

Let 0 be a parameter to be estimated using a large number n of observable

random variables, the totality of which will be denoted by a single letter Xn.

Let, further, Fn(Xn) denote a function of Xn and <rn(0) a function of n and

0 but not of Xn, having the property that, as n —> oo, for all \ > 0,

I y/%K J0

By selecting an appropriate A, the integral in the right hand side may be

made equal to the chosen confidence coefficient a. Hence, if n is sufficiently
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large, the probability in the left hand side of this equation will differ but

very little from a. But this probability coincides with the probability,

P{Fn(xn) - \cn(e) g e g Fn(Xn) + \<rn(e)},

which indicates that the two limits, say

0 = Fn(Xn) - X<rn(0) and S = Fn(Xn) + \an(0),

have the properties of an (approximate) confidence interval corresponding

to the confidence coefficient a. It is true that, without the knowledge of 0,

these limits may be impossible to compute. The important fact, however,

is that the length of the interval indicated is 2\<rn(0) and thus is a fixed

multiple of <rn(0). Thus, if a number of functions like Fn(Xn) are avail-

able for estimating 0, the tendency towards the greatest precision in esti-

mation as measured by the length of the approximate confidence interval

implies a preference for those estimates for which the asymptotic variance

<rn2(0) is smallest. This, then, is one of the rational justifications, which

may be brought forward, for the use of best unbiased and maximum likeli-

hood estimates in the (frequent) cases in which they are asymptotically

normal and efficient. It will be noticed, however, that this justification has

nothing to do with any sort of principle or axiom but is based on purely

utilitarian considerations of consequences of repeated application of the

procedure described.

It may be worthwhile to emphasize that the justification for the use of

best unbiased estimates explicitly stated by Gauss is a different one. As

Laplace had already noticed, the process of estimating an unknown param-

eter 0 may be compared with a game of chance in which a statistician, using

an estimate Fn(Xn), may lose a positive quantity [when Fa(Xn) ^0] or

may break even [when Fn(Xn) = 0], but in which he can never gain. The

quantity lost is, therefore, a monotone increasing function of the absolute

value of the difference | Fn(Xn) - 0 |, the nature of which, however, cannot

be deduced from the general circumstances of the problem of estimation.

Thus, this loss function, say L[Fn(Xn) - 0], may be selected arbitrarily

in conformity with each particular problem of estimation. Once the loss

function is selected, the goodness of any particular estimate Fn(Xn) may

be measured by the expectation, say "risk,"

R[Fn(Xn), 0] = E{L[Fn(Xn) -0]},

of the loss which will be incurred when Fn (Xn) is used as an estimate of 0.

Laplace himself studied certain problems on the assumption that the

loss due to an error in estimation is directly proportional to the absolute

value of the error. On the other hand, Gauss noticed that various results
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became more elegant if the loss is assumed to be proportional to the square

of the error committed so that

L[Fn(Xn) -8] = [Fn(Xn) - Of.

Upon reflecting on the general nature of errors of measurements, in par-

ticular, on the possibility of systematic errors, Gauss found it necessary to

impose on the estimate Fn(Xn) another condition, that of unbiasedness,

expressed by identity,

E[Fn(Xn)] m 8.

It will be seen that the two conditions, one of the unbiasedness of Fn(Xn)

and the other of minimum expected loss measured by the square of the

error, formulate the now familiar problem of best unbiased estimates. All

this was reported to the Konigliche Societat der Wissenschaften in Gott-

ingen on February 15, 1821, and subsequently published in Latin. A Ger-

man translation by A. Borsch and P. Simon appeared in a book under the

general title, Abhandlungen zur Methode der kleinsten Quadrate von Carl

Friedrick Gauss, Berlin, 1887, pp. v + 208. I enter into these bibliographi-

cal details partly in an attempt to correct a confusion to which I unwit-

tingly contributed by attributing to Markoff the basic theorem on least

squares. See, for example, F. N. David and J. Neyman: "An extension of

the Markoff theorem on least squares," Stat. Research Memoirs, Vol. II

(1938), pp. 105-116. As R. L. Plackett pointed out in his "A historical

note on the method of least squares" (Biometrika, Vol. 36 (1949), pp. 458-

460), the theorem that I ascribed to Markoff was discovered by Gauss and

published in the remarkable memoir just quoted.18

Early in the present century, the idea of the loss function attracted the

attention of F. Y. Edgeworth who, under the label of "detriment" discussed

it in a number of his papers, published in Mind and in the Journal of the

Royal Statistical Society. In one of these papers (Jr. Roy. Stat. Soc, Vol.

71, 1908, and 72, 1909) he was in search of the "most advantageous" esti-

mates, that is, such estimates as would, in large samples, minimize the

average detriment. Edgeworth, anticipating Fisher by thirteen years, con-

ceived the conviction that the "most advantageous" estimates (in present

day terminology, asymptotically normal estimates with minimum asymp-

totic variance) are those obtained by the "genuine inverse method," or as

we say now, following Fisher, the maximum likelihood estimates.

After Edgeworth, the idea of the loss function was lost from sight for

more than two decades, to be revived in a paper by E. S. Pearson and

18 For more recent developments in this direction, see E. W. Barankin and John

Gurland: "On asymptotically normal, efficient estimators: I," University of California

Publications in Statistics, Vol. 1, No. 6 (1951), pp. 89-130.
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myself, "The testing of statistical hypotheses in relation to probabilities

a priori" (Camb. Phil. Soc. Proc, Vol. 29 (1933), pp. 492-510). Unfor-

tunately, at that time we were not aware of the fact that the idea was not

new. Also, being preoccupied with other problems, we just mentioned the

idea as a possible approach to the problem without attempting to do any-

thing concrete. The real revival of the idea of the loss function and of the

associated risk function began with the entry on the scene of statistical

research of Abraham Wald. Combining the concept of loss with another

concept of minimax (also outlined in the above publication of 1933), Wald

has initiated a new branch of statistical theory and, followed by Wolfowitz

and a host of younger searchers, brought it to a remarkable level of elegance

and generality. The principal results obtained in this direction are sum-

marized in the recent book of Wald: Statistical Decision Function (Wiley,

New York, 1950, pp. ix + 179).

Part 3. Fiducial Argument and the Theory of Confidence Intervals

(This section has been reproduced from Biometrika, Vol. 32 (1941), pp. 128-160, through

the courtesy of the Editor, Professor E. S. Pearson.)

1. INTRODUCTION

The theory of confidence intervals was started by the present author

about 1930. At that time it was taught in lectures given both at the Uni-

versity and at the Central College of Agriculture, Warsaw, Poland. The

theory found immediate practical applications, and before any theoretical

paper was published, a booklet (Pytkowski, 1932) l appeared giving numer-

ical confidence intervals for means and for regression coefficients. The term

"confidence interval" is a translation of the original Polish "przedzial

ufnosci." The author's theoretical results appeared two years later (Ney-

man, 1934). At almost the same time the first tables and graphs of con-

fidence intervals were published (Clopper & Pearson, 1934) in a paper

which gave a remarkably clear explanation of the difference between the

new approach to the problem of estimation and the old one, by means of

Bayes's theorem.

The first publication on fiducial argument (Fisher, 1930) anticipated the

booklet of Pytkowski by two years. The present author overlooked this

article for some time. However, when preparing his paper of 1934, he was

already acquainted with it and also with the next paper (Fisher, 1933) on

a similar subject. Although Fisher's method of approach was entirely

different from the author's, the numerical identity of Fisher's fiducial limits

1 The references cited are given in full at the end of this Part, on pages 253-254.
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with the confidence limits in the author's theory, and also some of Fisher's

early comments, suggested to the author that the two theories are essentially

the same. Accordingly, and owing to the difference in dates of publications,

the author considered his own work as an extension of the previous results

of Fisher. This was clearly stated in the author's paper of 1934.

Apart from the above points of agreement the author had found certain

passages and conceptions in the publications of Fisher which were difficult

for him to understand and to reconcile with what was essential in the theory

of confidence intervals. They included "fiducial probability" and "fiducial

distribution of a parameter." However, the author was inclined to think

that these were, more or less, lapsus linguae, difficult to avoid in the early

stages of a new theory. This attitude was clearly expressed in the paper

of 1934. That paper was read before a meeting of the Royal Statistical

Society and was followed by a public discussion recorded in the Society's

Journal. Fisher took part in the discussion, and it was a great surprise to

the author to find that, far from recognizing them as misunderstandings,

he considered fiducial probability and fiducial distributions as absolutely

essential parts of his theory. As a result, the author began to doubt whether

the two theories were, in fact, equivalent. These doubts were only increased

by Fisher's insistence that the calculation of fiducial distributions and fidu-

cial limits must be limited to cases where sufficient statistics exist (Fisher,

1936), and by his warnings against inconsistencies in the theory of con-

fidence intervals.

When questioned on the subject, the author could not conceal his doubts

and they were published (Neyman, 1938a). Subsequent publications by

other authors appear to be divided. Some, e.g. the very important papers

by Wald (1939) and by Wald & Wolfowitz (1939), deal with the theory

of confidence intervals, entirely ignoring fiducial theory. Others (Starkey,

1938; Sukhatme, 1938; Yates, 1939), at the other extreme, work on the

ground of fiducial argument and ignore the confidence intervals. There is

also an intermediate group of authors with an almost continuous spectrum

of opinions. Pitman (1939), in a very interesting paper on estimation of

location and scale parameters, states that the two theories "are essentially

the same and that their two points of view are both necessary for a full

comprehension of the theory of estimation." And a few pages further: "I

at first called it the fiducial probability function, but finally decided to

shorten the name by dropping the word 'probability.'"

Next we find the statement (Bartlett, 1939) that "by a distribution of

fiducial type we shall mean a distribution providing at least confidence

intervals in the sense of Neyman." This statement is used in an argument

(Bartlett, 1936, 1939) that, as a distribution deduced by Fisher (1936) does

not seem to provide confidence limits, there must be some error in the

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

0
 1

5
:4

2
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

7
2

9
7

9
8

2
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



STATISTICAL ESTIMATION 231

deduction. A similar point of view, but with a stronger leaning towards

confidence intervals, is expressed by Welch (1939). In this paper various

general claims of Fisher are analyzed, essentially from the point of view

of confidence intervals, and tested on appropriate examples. Among other

things it is found that the fears of inconsistencies in the theory of confidence

intervals are unfounded.

A quite different school of thought is represented by Jeffreys (1940),

according to which the fiducial approach to the problem of estimation is

completely equivalent with that by inverse probability.

Fisher (1937, 1939a, 19396) and Yates (1939) emphatically deny that

there is an error in Fisher's paper of 1936. On the contrary, it is said that

the results then published were obscured by the controversy arising from

Bartlett's confusion about the nature of fiducial argument. Also, especially

in earlier papers (1930, 1933, 1936), Fisher is equally emphatic on the dis-

tinction between the fiducial and the inverse probability approaches to the

problem of estimation.

The above survey shows that there is an interesting divergence of opinions

as to what is essential in the fiducial theory in general and as to whether

it is in any way connected with the theory of confidence intervals. The

perusal of all the literature quoted does not allow the present author to

form any precise opinion as to the first of these questions. On the other

hand, there now seems to be sufficient ground for answering the second,

concerning the relationship between the two theories. The purpose of the

present paper is to show that there is none. The relevant points concerning

this question, which were possible to establish on the ground of earlier

literature, are explained in excellent papers by Pearson (1939) and Welch

(1939), with the final conclusion that, in spite of various differences, the

two theories are closely related. However, fresh evidence provided by

papers of Fisher (1939a, 19396) and Yates (1939) shows that no such rela-

tion exists and that the authors suspecting it were misled by the incomplete-

ness of earlier writings concerning fiducial argument.

As a result of the present paper it may be found expedient, for the sake

of clarity, to avoid confusion of terminologies appropriate to the two

theories. Instead of writing, as some authors do, on "fiducial or confidence"

limits, it may be preferable to discuss "fiducial limits" or "confidence limits,"

as the case may be, separately.

2. BASIC IDEAS IN THE THEORY OF CONFIDENCE INTERVALS

The key to understanding the theory of confidence intervals is in being

clear about what might be called the classical point of view in the theory

of probability. This theory was originally built up to answer questions
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about how frequently a given combination of throws will occur in a long

series of games of dice. Thus, the probability of a certain combination

found to be, say, 1/5, implies that this combination would appear in about

20% of a long series of actual games. This agreement may, but need not,

be observed. In the latter case, we would say that the assumptions under-

lying the deduction were not realized by the actual experiments. The dice

used were perhaps "biased," and so forth. The point is that, whenever it

is said that a given set of probabilities does refer to some phenomena, then

it is understood that the relative frequencies of various aspects of the

phenomena, in a long series of trials, are approximately equal to correspond-

ing probabilities. This is just what the author calls the classical point of

view in the theory of probability. It is excellently explained by v. Mises

(1939), but is more general than the definition of probability adopted by

that author.2

Apart from the classical point of view on probability, there is another.

It considers the probabilities as measures of rational belief in the truth of

a given proposition. Here the agreement between the probability and some

relative frequency is not essential.

The theory of confidence intervals was built up to give a solution of

problems of estimation which would have a clear frequency interpretation,

characteristic of the classical point of view. Consider a set E of n observ-

able random variables, xi, •••, xn, and assume as given that the func-

tion p(E | 0i, 02, •••, 0,) represents its elementary probability law. Here

0i, •" •, 0« represent certain parameters whose values are unknown.

The above should be interpreted as follows. There are some actual trials T

which are able to determine the values of the x's. There are also some num-

bers #i, #2, • •', #«, unknown to us, such that, whatever be a region w in the

space of the x's, the integral of p(E \ #i, #2, • •', #«) taken over this region is

approximately equal to the relative frequency with which the point E, as

determined by the trials T, falls within that region w. The problem of esti-

mating one of the parameters, e.g. 0U consists in using just one system of the

x's as determined by the trials T to calculate &i approximately. Alternatively,

it may consist in calculating an interval (a, a + d) which "presumably" covers

The original approach to this problem is based on Bayes's theorem. De-

note by p(0i, 02, . • •, 0,) the elementary probability law of the 0's. Then

p(*i, h, • • •, 0, | E') = — - (1)

f . -fp(fii, . . •,e,ME'10i, • • •,e,)dd1 .••do.

2 It will be noticed that the classical point of view on probability does not imply any

particular definition of that concept. It is not suggested that the one adopted by

v. Mises is the only one that could be consistently used.
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will be the relative probability law, or the probability law a posteriori of all the

0's given the observed system W of the values of the x's. It can be used to

calculate the most probable value of 8i. Alternatively, given a number d > 0,

the law can be used to find the interval (a, a + d) such that the a posteriori

probability

P{a + d> 8i> a\E'}

is greatest.

Our attitude towards this kind of solution, dictated by the classical point

of view on probability, depends on circumstances and may be twofold.

The circumstances of the problem may imply not only that the x's but

also that the 0's are random variables and that the function p(0i, • • •, 0,)

could be used to calculate the relative frequencies of various combinations

of values of the 0's. Such situations are rare, but they do occasionally

occur, especially in problems of genetics and of mass production. If the

function p(0i, • • ., 0„) is implied by the problem considered, then the prob-

ability P{a + d > 8i > a | E'} has a clear frequency interpretation, as

follows. Imagine a long sequence, S, of cases where the 0's vary according

to the above law and the x's are determined by the particular trials con-

sidered. Pick from this sequence S a subsequence S(E') of such trials in

which the experiments determined the same system of values of the x's,

namely, the system E'. Naturally, the value of 0i in cases belonging to

S(E') would vary. But, if the functions p(E \0i, . .•, 8,) and p(0u ••• ,8,)

do have the presumed relation to the trials considered, it will be found that

among all the intervals of length d, the interval (a, a + d) will contain

the value of 0i more frequently than any other, and that this frequency

will be approximately equal to P{a + d > 0i > a \ E'}. It follows that, if

the function p(8i, •••, 0,) is implied by the circumstances of the problem

of estimation, the use of the formula (1) is perfectly legitimate from the

point of view of the classical theory of probability.

The situation is quite different when the circumstances of the problem

do not imply the a priori probability law. This is most frequently the case.

Moreover, usually there are serious difficulties in considering the 0's as

random variables. Jeffreys (1939) advises the use of formula (1) also in

such cases, with a function p(0i, •••, 0,) invented for the purpose. He

claims that the conclusions drawn in this way are valid, provided that the

function used is just the one that he suggests. The present author would

not question this statement on condition that the word "valid," or any

other such description, is not given any significance beyond that described

above. In other words, there seems to be no reason why we should not

agree to call the above conclusions "valid in the sense of Jeffreys." On the

other hand, it seems essential to be clear that any probability calculated

from (1), with any function p(8i, • • •, 0«) not implied by the actual prob-
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lem, need not and, generally, will not have any relation to relative frequen-

cies. It will not be the probability in the classical sense of the word and,

therefore, persons who would like to deal only with classical probabilities,

having their counterparts in the really observable frequencies, are forced

to look for a solution of the problem of estimation other than by means of

the theorem of Bayes.

This solution (Neyman, 1937, 19386) may be obtained as follows. Con-

sider the case where the circumstances imply that the x's, forming a system

E, are random variables with the probability law p(E\8i, 02, •••, 08),

where 8i, 82, • • •, 8, are unknown. Denote by 8(E) and 8(E) two functions

of the x's. Obviously, if E is random then these functions will also be

random variables.

Definition 1. // the functions 8(E) and 8(E) possess the property that,

whatever be the possible value di of 8i and whatever be the values of the unknown

parameters 82, 83, • • •, 88, the probability

P{8(E) <Si< 8(E) I 0i, e2, • • •, 0,} m a, (2)

then we will say that the functions 8(E) and 8(E) are the lower and the upper

confidence limits of 8i% corresponding to the confidence coefficient a. The interval

\8(E), 8(E)] is called the confidence interval for 8i.

In spite of the complete simplicity of the above definition, certain persons

have difficulties in following it. These difficulties seem to be due to what

Karl Pearson (1938) used to call routine of thought. In the present case the

routine was established by a century and a half of continuous work with

Bayes's theorem. It may be useful, therefore, to give a few illustrations.

Assume that s = 2, that 8i may have only the five values 1, 2, 3, 4, and 5,

and that, at the same time, 02 may vary continuously between zero and 1.

To satisfy Definition 1, the only requirement on the functions 8(E) and 8(E)

is that

P{8(E) <#< 8(E) I d, 82} = a (3)

for all values of # = 1, 2, 3, 4, and 5, and for 82 varying between (0, 1). The

probabilities (2) and (3) are, therefore, not the probabilities of 0i falling within

any limits. On the contrary, they are the probabilities of the functions

8(E) and 8(E) falling on both sides of a specified number #. These proba-

bilities are to be calculated from the given function p(E \ 0i, 82) with the

value of 8i set equal to the same number #. The result must be totally

independent of the values of 82, • • •, 8, and must equal a.

It is known (Neyman, 19356; Feller, 1938) that in certain cases no such

functions 8(E) and 8(E) exist. Then there are ways of modifying the formula-

tion of the problem, for example, requiring that the probability on the left

of (2) be at least equal to a, and so forth. In other cases, there will be an
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infinity of pairs of confidence limits all corresponding to the same a. In

this case, the practical statistician is at liberty to choose among them.

Let us now consider the frequency interpretation of the solution of the

problem of estimation by means of confidence intervals. Suppose that some

two functions 8(E) < 8(E) possess property (2) with some large value of a,

say a = 0.99. Their use in practice would consist of (i) observing the values

E' of the x's, (ii) calculating the corresponding values of the confidence limits

8(E') and 8(E'), and (iii) stating that the true value #i of 0i lies between

8(E') and 8(E'). The justification is simple and perfectly in line with the

classical point of view of probability: in the course of many applications, the

relative frequency of cases in which the statement 8(E) < #i < 8(E) is correct

will be approximately equal to a = 0.99, whether or not the parameters for

estimation are the same in all cases.

The word "stating" above is put in italics to emphasize that it is not sug-

gested that we can "conclude" that 8(E') < #i < 8(E'), nor that we should

"believe" that #i is actually between 8(E) and 8(E). In the author's opinion,

the word "conclude" has been wrongly used in that part of statistical litera-

ture dealing with what has been termed "inductive reasoning." Moreover,

the expression "inductive reasoning" itself seems to involve a contradictory

adjective. The word "reasoning" generally seems to denote the mental proc-

ess leading to knowledge. As such, it can only be deductive. Therefore,

the description "inductive" seems to exclude both the "reasoning" and also

its final step, the "conclusion." If we wish to use the word "inductive" to

describe the results of statistical inquiries, then we should apply it to "be-

haviour" and not to "reasoning." The fact that a given pair of functions

8(E) and 8(E) satisfies the identity (2) may be "deduced" from the properties

of the function p(E \ 8i, •••, 8,). Earlier trials may show characteristics in

the empirical distribution of the x's which seem in agreement with the function

p(E \8i, • • ., 8s). On these grounds, after observing the values of the x's

in a case where the 0's are unknown and calculating 8(E') and 8(E'), we may

decide to behave as if we actually knew that the true value di of 8i were

between 8(E') and 8(E'). This is done as a result of our decision and has

nothing to do with "reasoning" or "conclusion." The reasoning ended when

the functions 8(E) and 8(E) were calculated. The above process is also devoid

of any "belief" concerning the value #i of 8i. Occasionally we do not behave

in accordance with our beliefs. Such, for example, is the case when we take

out an accident insurance policy while preparing for a vacation trip. In doing

so, we surely act against our firm belief that there will be no accident; other-

wise, we would probably stay at home. This is an example of inductive

behaviour.

Obviously, if there are many different pairs of functions, 8(E) and 8(E), all

corresponding to the same a, our choice of the one to use must be based on the
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detailed study of their properties. For example, if it appears that the differ-

ence between one pair, 8i(E) - 8i(E), is always (or most frequently) smaller

than that between some other pair, then we would probably prefer to use the

first. The problem of determining the confidence limits and of studying their

properties forms the subject of the theory of confidence intervals.

3. NECESSARY AND SUFFICIENT CONDITIONS FOR A PAIR OF FUNCTIONS TO BE

CONFIDENCE LIMITS

Let a(E) < b(E) be any two single-valued functions of the x's determined

for all possible systems of their values. Denote by W the space of the x's

and by #i one of the possible values of 0i. Finally, let A (di) denote the region

in the space W composed of all points E which satisfy the double inequality,

a(E) <di< b(E). (4)

It was proved (Neyman, 1937) that for the two functions, a(E) and b(E),

to be the lower and upper confidence limits for the parameter 8i, it is neces-

sary and sufficient that, whatever be the possible value #i of 8i, the probability

P|I«l(*1)|j1=*i)sa. (5)

The identity refers to the arbitrary variation of 02, • • •, 8,.

This condition will be used below to show that a certain pair of functions

does not represent the confidence limits. For this purpose, the following

steps will be taken: We shall select a convenient value #i of the estimated

parameter 8i and determine the region 4(i?i) as in (4). Next, we shall sub-

stitute this same value #i instead of the parameter 8i in the elementary prob-

ability law of the variables considered, getting p(E | di, • • •, 8,). This last

function will be integrated over A(d{) to find the probability P{E e A \ 8i =

di} as in the left-hand side of (5). But this integral will be dependent on the

values of the other parameters involved, showing that the identity (5) is not

satisfied. The conclusion will be that the particular functions considered are

not confidence limits.

4. DIFFERENCES BETWEEN THE THEORY OF CONFIDENCE INTERVALS AND THE

THEORY OF FIDUCIAL ARGUMENT

In this section we will consider examples treated both from the point of view

of confidence intervals and of fiducial argument. These will be selected to

illustrate both the conceptual and the numerical differences between the two

theories.

(i) Evidence of conceptual differences between the two theories.—The first

results obtained concerning confidence intervals (Neyman, 1934) refer to the

case where all the n observable variables x,. are mutually independent, nor-

G
e
n
e
ra

te
d
 f

o
r 

La
w

re
n
ce

 J
 H

u
b

e
rt

 (
U

n
iv

e
rs

it
y
 o

f 
Ill

in
o
is

 a
t 

U
rb

a
n
a
-C

h
a
m

p
a
ig

n
) 

o
n
 2

0
1

3
-1

0
-2

0
 1

5
:4

2
 G

M
T
  
/ 

 h
tt

p
:/

/h
d
l.
h
a
n
d
le

.n
e
t/

2
0

2
7

/m
d
p
.3

9
0

1
5

0
0

7
2

9
7

9
8

2
P
u
b
lic

 D
o
m

a
in

, 
G

o
o
g

le
-d

ig
it

iz
e
d

  
/ 

 h
tt

p
:/

/w
w

w
.h

a
th

it
ru

st
.o

rg
/a

cc
e
ss

_u
se

#
p
d
-g

o
o
g
le



STATISTICAL ESTIMATION 237

mally distributed, have the same though unknown standard error a, and

expectations £(z,) which are linearly connected with some s < n unknown

parameters p\, p2, •••, ps, so that

fife) = aapi + ai2p2 H h aitp,. (6)

Here the o's are supposed to be known and to form a non-singular matrix.

Denote by 0 any linear combination of the same p's, that is

0 = biPi + b2p2 H F b,ps, (7)

with known 6's not all equal to zero. In these circumstances, a confidence

interval for 0 is given by

F - Sta < 0 < F + Sta, (8)

where F denotes the best unbiased estimate of 0 (David & Neyman, 1938),

S the estimate of the standard error of F, and ta the value of the "Student"-

Fisher t corresponding to the number of degrees of freedom n — s and to

P = 1 — a. The application of more recent theory (Neyman, 19356) shows

that the confidence intervals (8) have distinct advantages over any others by

satisfying the definition (Neyman, 1937) of the "short unbiased system of type

B\." Without entering into these details, we shall consider the particular

case where s = 1, a,i = 1 and &i = 1. This will be the case if all the x's

come from the same unknown normal population and it is desired to estimate

its mean, 0 = 8(x,). In that case F = x and

.. 2Kx< - x)2

* = T i • (9)

n[n — 1)

As mentioned, the general confidence interval (8) was discussed in lec-

tures about 1930, and in 1932 a publication appeared using the concept and

the formula (8).

As far as is known, the first full discussion of the corresponding result in

the fiducial theory was given by Fisher a few years later (Fisher, 1935,

1936), and here is the relevant passage from the second paper.

If a sample of n observations, x\, • • •, xn, has been drawn from a normal population having

a mean value /u, and if from the sample we calculate the two statistics x = Xxt/n and

s2 = 2(x< — xf/{n — 1), •••, "Student" has shown (1925)3 that the quantity t, defined

by the equation

<-(*-M)V", (10)

s

is distributed in different samples in a distribution dependent only from the size of the

sample, n. It is possible, therefore, to calculate, for each value of n, what value of t will be

3 Actually, of course, this result appeared earlier ("Student," 1908).
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exceeded with any assigned frequency, P, such as 1 % or 5%. These values of t are, in fact,

available in existing tables (Fisher, 1925-34).

It must now be noticed that t is a continuous'function of the unknown parameter, the

mean, together with observable values, x, s and n, only. Consequently the inequality

t > h is equivalent to the inequality

sh

*. < * - -p. (11)

so that this last inequality must be satisfied with the same probability as the first. This

probability is known for all values of ti, and decreases continuously as h is increased. Since,

therefore, the right-hand side of the inequality takes, by varying ti, all real values, we may

state the probability that n is less than any assigned value, or the probability that it lies

between any assigned values, or, in short, its probability distribution, in the light of the

sample observed.

It is of some importance to distinguish such probability statements about the value of

ft, from those that would be derived by the method of inverse probability, from any postu-

lated knowledge of the distribution of n in the different populations which might have been

sampled. ... To distinguish it from any of the inverse probability distributions derivable

from the same data it has been termed the fiducial probability distribution, and the prob-

ability statements which it embraces are termed statements of fiducial probability.

In the next section we shall analyze the above passage in detail and show

exactly where and how it conflicts with the classical theory of probability

and thus with the theory of confidence intervals. Here we will mention

only that it is ambiguous. Just this kind of ambiguity, which is also found

in the earlier papers (Fisher, 1930, 1933), is probably responsible for a

number of authors, including the present one, thinking that the fiducial

theory and the theory of confidence intervals are linked.

In a few years it was found necessary to reinterpret formula (11). This

was done by Fisher himself (19396) and, somewhat more clearly but on the

same lines, by Yates (1939). It will be seen from the following quotation

from Yates's paper that the above passage by Fisher certainly does not

contain everything which is now considered essential in the fiducial theory

and that the presumption of any link between the latter and the theory of

confidence intervals is unfounded. Yates's more relevant sentences are

italicized by the present author.

While explaining the meaning of the fiducial distribution of the mean p

of a normal population, Yates mentions that the fiducial distribution of <r2

is given by

7 = S(z,. - xf (12)

where x2 has its usual distribution with n - 1 degrees of freedom.

It can then be shown that, for a value of n equal to /ie and a given s, the value of St in

subsequent samples would be as small as that observed in a fraction e of the samples,

provided that the actual distribution of <r2 is the same as the fiducial distribution given above.
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In this form, however, the statement is open to objection on the ground that in subse-

quent samples a may in fact be distributed in any manner, and that s will certainly vary

from sample to sample. To avoid this objection we must frankly recognize that we have here

introduced a new concept into our methods of inductive inference, which cannot be deduced by

the rules of logic from already accepted methods. . . . That is . . . the form of fiducial state-

ment which is implicit in the t test as ordinarily used by practical experimenters. . . .

It must be recognized as essentially different from the statement that t will exceed tf in a

fraction e of all experiments. The latter is true for any given fixed a or any set of a's. The

former (i.e., the fiducial statement, J.N.) is true for a given s when a is taken to be fiducially

distributed in the appropriate distribution. . . . The logical difference between the two ap-

proaches (fiducial and inverse probability, J.N.) should, however, be recognized. The

approach by inverse probability enables fiducial statements about n to be derived from the

classical theory of probability, without the introduction of any new principle, but only at

the cost of postulating a particular a priori distribution of a. In the fiducial approach such

a priori postulation is regarded as inadmissible, but in order to discard it a new principle, that of

utilizing the fiducial distribution of a, must be introduced. . . . Once the principle is accepted

it is possible, given x and s, to make formal and exact statements of the fiducial type about

fi which are independent of all prior knowledge of a. If the principle is not accepted, then

it appears that we must either assume an a priori distribution of a, or deny that there is any

possibility of making fiducial statements about u.

The present author is unable to understand the exact meaning of what is

called "fiducial statements about y." However, his conclusion is that their

conceptual nature must be quite different from that dealt with in the theory of

confidence intervals. This conclusion is based on the fact that all the diffi-

culties described by Yates as inherent in the fiducial theory are non-existent

in the theory of confidence intervals. Applications of the latter require no

new principle "which cannot be deduced by the rules of logic," no assumption

that this or that unknown parameter follows any specified distribution, and

have no connexion with Bayes's theorem. To make the situation absolutely

clear, imagine a sequence.of normal populations ti, T2, •••,lgrm, •••, with

their means 8i, 82, • • •, 0m, ••• and their standard deviations <ri, <r2, • • •, <rm,

Imagine that out of each population xm we have a random sample Sm of n

individuals, with its mean xm and an estimate of the corresponding variance

Sm2 as in (9). The theory of confidence intervals guarantees that the relative

frequency with which xm - taSm will fall short of the corresponding 8m and,

at the same time xm + taSm will exceed this same number 8m, will be, within

an error of sampling, equal to a. An incredulous reader may easily check

this by a sampling experiment. In this he will be at liberty to keep 8m

and/or am constant, or to vary them at his pleasure, without any restriction.

Of course, the distributions of the populations sampled should be more or less

normal and the sampling should be random. It follows from the above

passages of Yates that if the requirements above are satisfied but no new

principles accepted, then we have to deny that there is any possibility of

making fiducial statements about 8m. If so, then the nature of the latter is
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different from those involved in the application of the theory of confidence

intervals.

The comparison of the above comments by Yates with those of Fisher

gives a curious impression. Where Yates sees so many difficulties and

restrictions, Fisher mentions none. Yet this very publication of Yates is

fully endorsed by Fisher (19396).

(ii) Numerical differences between the two theories.—Besides establishing

the existence of conceptual differences, it is essential to show that the two

theories may give different numerical results. We may conclude from the

discussion above that the application of confidence intervals requires fewer

restrictions. But there is a logical possibility that, when both theories are

applicable, they give the same numerical result. The following example

shows that this is not the case and that fiducial limits need not satisfy the

definition of confidence limits.

The example that we are going to discuss refers to the problem of esti-

mating the difference, say 8, between the means of two populations of which

it is known only that both are normal. Denote by

(13)

*2,1, ^2,2, ' " ' i x2,n', J

two random samples to be drawn from these populations and let n<n'.

The confidence limits for 8 have been very elegantly obtained by Bartlett.

He did not publish his results himself but they are briefly mentioned in a

paper by Welch (1938). The tendency towards a greater generality of

presentation resulted in certain complications. The following is a less

general but simplified statement of the results.4 Assume that the x's in

(13) are numbered in the order in which they will be given by observation.

Otherwise, randomize the second series. Next calculate n differences

Ui = xi,i - x2,i, (i = 1, 2, • • •, n). (14)

If S(zi,,.) = 8 + S and S(x2,i) = 8, then S(w,) = 5. If the s.d.'s of the two

populations sampled are a and a', then the s.e. of wt. will be (<r2 + a'2)**.

The consecutive u's will be normal and independent and the problem of

estimating the difference between the means of two normal populations will

be reduced to that of estimating the mean of one population of the u's. Its

solution is given by the confidence interval

u - StM < 5 <u + StM, (15)

where S has an obvious meaning and t(a) is to be taken with n - 1 degrees of

freedom.

4 Apart from these, the same author has obtained certain relevant results referring to

the case where n = n' = 2 (Bartlett, 1936).
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Again, an experiment consisting in repeated sampling of pairs of normal

populations will show that, whatever be 0, 8, <r, a, whether constant or

varying in an absolutely arbitrary manner, the relative frequency of cases

in which the statement about 8 in the form of (15) will be true will be

approximately equal to as. The above solution of the problem, elegant as

it is, is only a partial one. The results of Bartlett do not tell us whether

the family of systems of confidence intervals found by him exhausts all

the possibilities and whether it is possible to construct intervals which

would be, in one sense or another, shorter than those given by (15). These

are interesting and important problems and we may hope to have them

solved.

Remark added in 1951: Since the above lines were first published in Biometrika, it

became apparent that, in the ideas described, Bartlett was anticipated by V. Romanov-

sky (Atti del Congresso Internazionale dei Matematici, Vol. 6, 1928, pp. 103-105). Also,

the problem of an optimum solution within the category outlined was solved by Henry

Scheffe (Annals of Math. Stat., Vol. 14, 1943, pp. 35-44). Later on, Schefte's solution

was extended to an analogous but somewhat more complicated problem by E. W.

Barankin (Proc, First Berkeley Symposium on Math. Stat, and Probability, 1945/46,

pp. 433-449).

A result in fiducial theory corresponding to, but not equivalent with,

formula (15) has been published by Fisher (1936):

Let us suppose that a sample of n observations has yielded a mean, x, and an estimated

variance of the mean, s2, so that s2 = 2(zj — x)i/n(n — 1); then we know that if m is the

mean of the population

n = x + st, (16)

where t is distributed in "Student's" distribution. Similarly, for the mean of a second

population, of which we have n' observations, we may write

M' - f + s't', (17)

where t' is distributed in "Student's" distribution with n' — 1 degrees of freedom, inde-

pendently of t. If now

M' - ii = «, x' - t = d, (18)

we find that

e = « - d = s't' - st, (19)

and since s' and s are known, the quantity represented on the right has a known distribu-

tion, though not one which has been fully tabulated. The equation may be written

t = V(s2 + s'i)(t' cosR-t sin R), (20)

where tan R _ s/s', so that R is a known angle. If t and t' be taken as the co-ordinates of a

point on a plane, the frequency of the observations falling within any area of the plane is

calculable. The points for which 6 has any given value lie on a straight line, at a distance

from the origin ±c/(s2 + s'2)^, and making an angle R with the axis of t. The fiducial

probability that e exceeds any given value is the frequency in the area above this line. If n

and n' are both increased, the distribution of t tends to be normal and independent of R;

when R is 0° or 90° the distribution is of "Student's" form. In general it involves n, n',

and R and for any chosen probability, therefore, requires a table of triple entry.
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As the reader will notice, no restrictions are mentioned and it is not sug-

gested that for the practical application of the results any assumption is

needed concerning the variability of the variances of the populations sam-

pled. Neither is there any suggestion of any new principle that may be

involved. We will return to this point below.

Following the publication of Fisher just quoted, and on his advice, Suk-

hatme published a table (Sukhatme, 1938). The quantity tabled may be

denoted by f(n, n', R) and represents the root of the equation

• +00 f /. +00 -J

H(f) dt' dt = 0.025, (21)

JLW

where G(t) and H(t') are "Student's" distributions with n — 1 and n' — 1

degrees of freedom respectively, while

f(n, n', R)

* = o o L + < tan 72. (22)

(s2 + s'2YA cos R V

It follows from the context that f(n, n', R) so calculated is the value such

that the fiducial probability of its being exceeded by | e |/(s2 + s'2)^ is equal

to 0.05. In other words, the values f(n, n', R) are the fiducial 5% limits of

| e |/(s2 + s'2)^. As « = 5 — d, if the presumption that the fiducial limits

necessarily lead to confidence intervals be true then this means that the double

inequality

x' -x- f(n, n', R) Vs2 + s'2 < 5 < x' - x + /(n, n', R) Vs2 + s'2

(23)

must be the confidence intervals for 8 = n' — n. But it is easy to see that

the functions on the extreme parts of (23) do not satisfy the conditions,

explained in § 3 above, necessary and sufficient for them to be the confidence

limits. Take 5 = 0 and denote simply by A the region in the space of the x's

including all the points in which the inequality (23) is satisfied. Take the

probability law of the x's and put S = 0 in it, that is, y! = n. It will be seen

that the integral 1(A) of this probability law taken over A depends on the

ratio p = <j/<j' of the two a's appropriate to the two populations sampled and,

thus, that it does not satisfy the identity (5).

Condition (23) defining the region A does not involve the particular z's but

only the means x, x', and the variances s2 and s'2. Consequently, to calculate

7(A) we may start with the probability law of those four variables

f(x, £', s, s') = ——, s"-2sm'-2

f nix - y)2 n'(x' - n)2 n(n - l)s2 n'(n' - l)s'2}
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where c is a purely numerical constant and does not involve any of the pa-

rameters. This function must be integrated over the region A denned by

(23) or by the equivalent inequality

x - x\

Vs2 + s'2'

< f(n, n', R).

(25)

In dealing with it, we have to remember that R is not a constant but is con-

nected with s and s' by the equation tan R = s/s'. The required integral,

or probability, of x, £', s, and s' satisfying (25) will be more easily calculated

if we introduce a new system of variables, u, v, R, and s0. These will be con-

nected to the old system as follows:

x = n + us0 sin R,

x' = n .\- vs0 cos R,

s = So sin R,

s' = s0 cos R.

The Jacobian J of the transformation is easily found to be

/ = s03 sin R cos R.

The limits of variation of the new variables are as follows:

- oo < u, v < +°o,

0<s0,

0 < R < h.

The probability law of the new variables will be

(26)

(27)

(28)

p(u, v, s0, R) =

' sin"-1 R cos"'"1 R, (29)

with

nu2 sin2 R n'v2 cos2 R n(n - 1) sin2 R n'M - 1) cos2 R

^ 5— + ^— + - k + - i (30)

j*

a a a

Inequality (25) will be equivalent to

| v cos R - u sin R \ < f(n, n', R).

,'2

(31)

As this does not involve s0 the integration with respect to this variable can be

carried out within the extreme limits of its variation. As a result further

integrations may be performed on the probability law of u, v, R,
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p(u, v,R)= I p(u, v, s0, R) ds0

c sin"-1 R cosn'_1 R

in+n'

(32)

where c is again a numerical constant.

Further integration may be conveniently carried out as follows. Substitute

a new variable z for the variable v so that

2 + u sin R dv 1

v —. -• (33)

cos K dz cos R

Keep z constant within the limits | z [ < f(n, n', R) prescribed by (31) and

integrate for u from — « to +<». The result is

__ csinn-2'cos"'-2fl

f nn' . n(n - 1) - n'(n' - 1) „ 1 -(n+n'-i)/2

X ,2. ,2^ + 2 sin2 7? + /2 cos2fl (34)

I Ti''2 + n''2 <r2 ''2 J

The integration is completed by an easy substitution for z

•*' f sin"~2 72 cos"'~2 7?

/(A)

= op"'~1 f

'o I {n(n - 1) sin2 R + n'(n' - l)/>2 cos2 72} (n+n'-2,/2

X

/

•'0

(1 + 22)(n+n'-1V2

dR, (35)

with / = /(n, n', 72) and

Ti<r'2 + nV2

W2 = (36)

sur R H r cos2 R

,r2 rr'2

' '

By inspecting (35) it is more or less evident that 7(A) must depend on

the value of p. However, to avoid any doubt in this respect, it was thought

useful to calculate 7(A) for a few values of p. This was done by Miss

Elizabeth Scott of the Statistical Laboratory, University of California, and

it is a pleasure to record the author's indebtedness to her. The calculations

involved supplementing the tables of Sukhatme for a denser set of values

of R. The calculated values of 7(A) are:
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n =

12,

n' = 6

p

/(A)

0.1

0.966

1.0

0.960

10.0

0.934

Thus the functions representing the fiducial limits for 8 do not satisfy the

conditions necessary and sufficient for them to be the confidence limits of

the parameter in question. It follows that if pairs of normal populations

forming a long sequence are sampled and the extreme parts of the double

inequality (23) calculated, then the relative frequency of cases where the

prediction of the value of 8 by means of these inequalities will be correct

need not be equal to the expected 0.95. It will depend on the value of p

and, if this is uncertain, this frequency will be unknown. Subsequent com-

ments by Fisher (Fisher, 1939a) seem to indicate that the frequency in

question is expected to approach 0.95 only if the ratio p is not constant

but follows a certain fiducial distribution. It is noteworthy that no such

restriction is to be found in the original work quoted above. On the other

hand, it is more or less in line with those restrictions formulated by Yates.

5. VIEWS OF M. S. BAETLETT AND B. A. FISHER

The controversy in which the main contributors are Bartlett (Bartlett,

1936, 1939) and Fisher (Fisher, 1937, 1939a, 19396) seems to be based on a

misunderstanding. Presuming that the fiducial limits are always equal

to confidence limits, Bartlett was puzzled by Fisher's results concerning 8

just quoted, and suspected an error. The subsequent elaborations by Fisher

and Yates amount to a confirmation that the values of f(n, n', R) as tabled

by Sukhatme do not provide the confidence intervals. But both authors

are emphatic that there is no error in the original deductions, and that

Bartlett misunderstood the problem. It is unthinkable that these four

unanimous papers are mistaken and, therefore, we must accept the conclusion

that the presumption of intrinsic identity between fiducial and confidence

limits is unfounded.

But it must be pointed out that, before the appeal to extra-logical prin-

ciples was published, there was much to be said in favor of the opinion

that the solution of Fisher, as quoted above, and the work of Sukhatme

both involved errors in the algebra of probability laws. It also seems that,

apart from establishing that the fiducial theory and the theory of confidence
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intervals are distinct, it will be of some interest to analyze Fisher's work

in detail and to point out exactly where and how it diverges from the rules

of ordinary theory of probability on which the theory of confidence intervals

is based.

When a system of observable phenomena is treated mathematically, it

is essential to be clear on exactly what is assumed as given or as known.

For example, when trying to calculate the area of land from a certain set

of measurements, it is essential to be clear as to assumptions made concern-

ing the shape of the land considered. The available data may be consistent

with a number of such assumptions, e.g. that the surface considered is a

plane or that it is spherical with a given radius, etc. Whichever of these

hypotheses is accepted as given, the applications of the appropriate for-

mulae will give mutually consistent results. But they would not generally

be consistent if one part of the calculations were made on one hypothesis

and another on a contradictory one. The differences may be small, but in

mathematics there are really no "small" nor "large" inconsistencies. There

are simply inconsistencies. Needless to say, the choice of exactly what is

to be accepted as given must be made to attain the greatest conformity with

empirical facts. But this is a question which need not be discussed here.

The above general principle also applies to the applications of prob-

ability. There we must be clear as to exactly what are the phenomena or

the variables which we agree to consider as random in a given inquiry.

In practice, of course, the random variable will be the one whose value at

the moment is uncertain and is being determined "by chance." If X is

considered as a random variable, the premises of the mathematical problem

must include some assumptions as to the relative frequencies with which

X assumes its possible values. These assumptions may vary in specificity,

but they must be present in the premises.

Any number or variable which is not random must be clearly recognized

as such. For some time such non-random numbers were called constants.

This was more or less satisfactory with constant numbers. But Frechet

(Frechet, 1937) has noticed that we may also consider variables which are

not random and has invented useful terms to describe them. These are

"nombre certain," "fonction certaine," etc. We will translate these terms

by "sure number" and "sure function." The thousandth digit in the expan-

sion ir = 3.1415 ... is a sure number, although totally unknown to me.

Denote by f(n) the relative frequency of O's among the first n digits of the

same expansion of ir. This will be a sure function. On the other hand, if

<j>(n) denotes the number of errors that may be made when calculating n.

to n places of decimals, then <j>(n) may be considered as a random function

of n. Considerations of this kind would imply those of a considerable

sequence S of similar attempts to calculate ir, by the same person or by
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different persons of a specified category, in which the values of <f,(n) will

vary, as we shall say, at random. It is with respect to just such a sequence

of determinations of the values of the function <t,(n) that our probability

statements will refer. For example, if we either start or finish our calcu-

lations with the probability equal to 0.25 of <f,(n) being between any two

sure numbers a, b, then the applicational statement is that about 25% of

the numbers of the sequence S satisfy the inequality a < <f, (n) < b.

It is important to notice that the sequence S may consist of just one

member; then all the proportions relating this "sequence" will have to be

either 0 or 1. In other words, if the sequence of "random" determinations

consists of just one element, this element will have the property of a sure,

not a random, object, in the usual sense of the word.

Now let us turn to the passage from Fisher's paper quoted above, pp. 237-8,

and try to see exactly what is supposed to be random there and what elements

of the problem are treated as sure numbers or sure functions. These details

in the set-up are not stated at the outset, but there is no difficulty in collecting

them from appropriate passages in the paper. We first see that the function

t of (10) is supposed to be "distributed in different samples . . . ." This

means that t is a random variable and that its randomness depends on what

is found in those repeated samples, namely, the values of x and s. It follows

that the probabilities concerning x, s, and t refer to the sequence S of those

"different" samples. The sequence could not consist of just one sample

because, in such a case, the "distribution" of t would not be anything like

"Student's" law. The references to a normal population sampled and to

"Student's" law indicate, on the contrary, that the sequence S of samples is

very large indeed, and that the distributions in it are comparable to those

represented by continuous curves.

Up to this time we have not mentioned the population mean /* which is also

involved in the expression of t. Obviously, this may be treated mathemati-

cally either as a random or as a sure number. Both methods of approach

are at our disposal but, in order to avoid inconsistencies, we must be clear as

to which one we follow. The indication of Fisher's choice is found a little

further on in this article, in the place describing the distinction between the

fiducial and the inverse probability approach: "It is of some importance to

distinguish such (fiducial) probability statements about the value of n, from

those that would be derived by the method of inverse probability from any

postulated knowledge of the distribution of n in the different populations

which might have been sampled." This sentence does not seem to leave any

ground for doubt. In the fiducial approach we consider but one population

sampled and no distribution of n is postulated. Therefore, n is a sure number

and, if t is distributed according to "Student's" law, it is a result of the appro-

priate variability of x and s alone.
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The symbol li, which also comes into play, is obviously a sure variable

capable of any real value between - o o and +00. We may select it as we wish

and then obtain the probability P(h) of the random variable t exceeding ti

from tables.

Following the article, we will readily agree with Fisher that the inequality

(11), namely, n < x - sti/Vn, is equivalent to t > ti and that it must be

satisfied with some probability P(ti). Now consider the phrase: "Since,

therefore, the right-hand side of the inequality (i.e. x - sti/vn) takes, by

varying ti, all real values, we may state the probability that n is less than any

assigned value, or the probability that it lies between any assigned values, or,

in short, its probability distribution in the light of the sample observed." From

the point of view of ordinary logic and of ordinary theory of probability this

phrase is inconsistent with the original set-up. The first inconsistency is

involved in the words which are italicized, suggesting that x and s in the

expression x - sti/ V n are not random but sure numbers, referring to one

particular observed sample. As a matter of fact this same inconsistency ap-

pears earlier in the statement that x - sti/Vn, by varying ti, will run

through all real numbers. If, as formerly, x and s are random with their

variation appropriate to the sequence S, then, whatever value we choose to

ascribe to ti, say t - 2, the expression x - 2s/Vn is also random and depends

on the outcome of sampling.

Apart from this sudden shift in the meaning ascribed to x and s, there are

two more inconsistencies. To see the first of them, let us follow Fisher,

changing our minds about x and s and considering them as sure numbers,

determined by one particular sample. In this case the inequality n < x -

sti/vn would contain no random elements at all: the first element, n, is an

unknown constant, the mean of a single population sampled, x and s are fixed

by the sample observed, and ti is the value of the sure variable that we have

chosen to consider. In these circumstances, the inequality may either be

true or not true and the probability of its being true will equal unity or zero

and have nothing to do with the probability or frequency P(h) which this

same inequality satisfies within a sequence S of many "different" samples.

The last inconsistency refers, of course, to the point of view on n. As we

have seen above, it is first considered as a sure number, but the passage just

quoted speaks of the probability of its lying between any assigned limits

possible to determine from the values of P(t). Assume n - 4 and that the

sample observed gives x = 10 and s = 2. Selects = 0.765 and ti = -0.765

so that P(<i) = 0.25 and P(ti) = 0.75. This would result in the supposed

probability P' of p. lying between the limits 9.235 < n < 10.765, being equal

to Y2. Trying to interpret this result in the light of the classical theory of

probability, we have to conceive a sequence, say S', of cases in 50% of which
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ix falls between the above limits. But exactly what could this sequence be?

Either there is such a sequence and then we must also consider other popula-

tions "which might have been sampled," and postulate something about the

distribution of /u,6 or else the "sequence" must be the degenerate one of one

element only with the probability P' equal to either zero or unity, but never

to J4

These are the points previously mentioned by the author (Neyman, 1934),

which, from the point of view of classical probability, represent conceptual

inconsistencies. They are also present in the other passage of Fisher quoted

on p. 241, but a similar analysis of that passage, supplemented by what has

subsequently been done by Sukhatme, will reveal errors in algebra of proba-

bility laws as well. These errors are particularly relevant from the point of

view of the controversies between Bartlett and Fisher.

The quantities considered in this passage are all dependent on the population

means n and n' and on the statistics x and s of one random sample and on x'

and s' of the other. Our analysis will also require the consideration of the

population variances a2 and a'2. We must start by deciding on the random

or sure character of all these quantities. Fisher's remark that the two ratios

u - £ u' - x'

t = and t' = (37)

s s'

are distributed according to "Student's" law with appropriate degrees of

freedom suggests that n and n' are treated as sure numbers and that x, x', s,

and s' are random. There is no reference whatever to the variances a3 and

a'2. As nothing is disclosed about what distribution they may possess, by

analogy with the n's it is natural to treat them as sure numbers also.

In order to interpret every step in calculations more easily, we shall imagine

two normal populations iri and x2 sampled and a sequence A of pairs of sam-

ples, of n and n' individuals respectively, drawn independently from iti and

x2. These pairs of samples will determine x, s, x', and s', generating distribu-

tions appropriate to normal populations. Substituted into formulae (37)

they will make t and t' vary to generate the two distributions of "Student."

With this in mind, let us examine the passage in which Fisher writes

€ = s - d = s't' - st, (38)

and comments: "Since s' and s are known, the quantity represented on the

right has a known distribution, though not one which has been fully tabu-

lated." We see here the same kind of sudden jump in the point of view on

quantities considered as is found in the passage analyzed previously. For-

merly s' and s were not "known" but random. Otherwise, the distributions

5 This is quite essential. Otherwise there would be an error in Bayes'a theorem.
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of t and t' would not have been those of "Student" but would have been

normal about zero and due solely to the variability of x and x'. Now s'

and s are known sure numbers. Let us allow for this shift in conditions and

try to visualize the character of the distribution of e for fixed s' and s. For

this purpose we have to consider not the whole sequence A of pairs of samples

mentioned above, but only a subsequence B composed only of those pairs of

samples in which the estimated variances have the same values s and s' as

the ones supposed to be "known." The variability of e in the subsequence

B will be the result of the variability of x and x' only. It is known that the

mean of a sample from a normal population is independent of the sample

variance. Consequently the distributions of x and x' in B will be normal.

As the connexion between e on one hand and x and x' on the other is linear

with constant coefficients, it would follow that the distribution of e in B

would be normal also. Therefore, it is with some surprise that one reads

Fisher's suggestion that this distribution has not been fully tabulated. Evi-

dently, when writing the sentence quoted, Fisher had something else in mind,

probably depending on the new extra-logical principle described in subsequent

publications. However this may be, we have to note the conflict between the

sentence quoted and the rules of ordinary logic and of the classical theory of

probability.

The distribution of e by itself does not play any further role in Fisher's

work. Instead he and, subsequently, Sukhatme consider the ratio that we

will denote by z = «/ V s2 + s'2. Fisher does not write any formula repre-

senting the supposed distribution of z and we have to look for the details of

his ideas in Sukhatme's paper. Complimentary references to this paper in

subsequent publications by Fisher suggest that it is perfectly in line with his

own ideas. We quote the relevant sentence in Sukhatme's paper, only alter-

ing his notation to bring it into agreement with that of Fisher.

He (Fisher) considers the distribution of

= t' cos B - t sin B, (39)

for given n, n', and B in order to obtain the probability that z exceeds any given value.

It is obvious at once that the probability in question does not refer to either

of the sequences A or B visualized above. The appropriate sequence C of

pairs of samples to which this probability refers is a part of the sequence A

composed of all such pairs of samples in which the variances s2 and s'2, while

variable, keep the ratio s/s' = tan R = constant. Mathematically, the

distribution sought is known as the relative distribution law of z given R

and is denoted by p(z \ R). If p(R) and p(z, R) are the absolute probability

law of R and the absolute joint probability law of z and R, respectively, then,

for every R such that p(R) > 0,
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V(z R) = ^j-L (40)

p(R)

The relative probability, given R, of z exceeding a fixed number zu that is,

P(z > Zi | R), will be obtained by integrating (40) for z from zi to +oo.

There is an alternative way of obtaining the same probability. This con-

sists of first finding the relative joint probability law given R of t and t'.

If this is denoted by p(t, t' \ R) then

P{z > «i | R} = \ f p(t, f | R) dt dt',

(41)

/w(zi)

where the region of integration w(z{) is determined by the inequality

z = t' cos R - t sin R > zi. (42)

A familiar formula gives

pit, V, R)

p(t, t'\R)= PK' ' '. (43)

p(R)

Whichever way, (40) or (43), is preferred, the resulting probability P\z >

Zi | R} will have the same value and will refer to the sequence C described

above.

Sukhatme has chosen to apply a quadrature procedure to calculate the

integral (41) with the integrand equal to the product of two of "Student's"

distributions with n - 1 and n' - 1 degrees of freedom respectively. This is

just the error in algebra of probability laws mentioned above. The t and t'

are distributed independently and in accordance with "Student's" laws only

in the sequence A where both the means x and x' and also the variances s2

and s'2 are undisturbed in their random and independent variation appropriate

to samples from normal populations. When calculating the probability

"for a given R," we do not consider the sequence A but only its part C so

selected that the ratio s/s' is constant. This selection disturbs the original

distribution of s and s' and is reflected in the resulting joint distribution of

t and t'.

In our calculations above (26) we have used the letters u and v for what is

here denoted by t and t!'. Consequently, the joint probability law p(t, t', R)

is obtained from (32) by merely substituting t for u and t' for v. The absolute

probability law of R is easily obtained by integrating (34) with respect to z

between the limits - o° and +00. The result is

n,_i sin""2 R cos"'"2 fl

V(R) ' cP" {n(n - 1) sin2 B + n'(n' - l)p2 cos2 R} <»+»'-2)/2' (U)

with c denoting a numerical constant. Substituting (32) and (44) into (43)

we obtain
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P{t'nR) = \n(? + n-l) sin2 R + n'(t'2 + n'- 1)P2 cos2 R}<»+»™' (45)

with <t>(R, p) denoting a function of R, p, n and n' only. p(t, t' \ R) is just the

function to be integrated to obtain the relative probability given R of t and

t' to verify any inequality such as t' cos R - tsaxR > Zi. As one would

expect p(t, t' | R) appears to depend not only on R but also on the ratio of the

population variances p2.

It follows that, from the point of view of the ordinary theory of probability,

the Fisher-Sukhatme solution is wrong. The error consists in their confusing

the absolute probability law of t and t', obtainable by integrating (32) for R,

with the relative probability law given R of the same variables as given by

(45). Some such error seems to have been suspected by Bartlett. Repeated

denials and the reference to the extra-logical principle underlying the fiducial

theory lead us to believe that from the point of view of that particular theory

the error is non-existent. While accepting these explanations we may still

regret that the earlier papers by Fisher and that of Sukhatme do not contain

any clue as to how they are to be interpreted.

6. SUMMARY

1. The theories of fiducial argument and of confidence intervals differ in

their basic conceptions. The validity of the former requires, at least in

some cases, the fulfilment of various restrictions of which the theory of

confidence intervals is totally free, and/or the acceptance of some new

principles impossible to deduce by the rules of ordinary logic (Yates, 1939;

Fisher, 19396).

2. The two theories may occasionally give the same numerical results in

the form of fiducial limits on one side and of confidence limits on the other.

The problem of estimating the difference of means of two unknown normal

populations shows, however, that this need not always be the case and that

fiducial limits need not satisfy the definition of confidence limits.

3. Bartlett's criticisms of Fisher's solution of the problem just mentioned

seem to be due to his considering the problem from the point of view of

ordinary theory of probability and ordinary logic. In this light Fisher's

solution does contain both conceptual misunderstandings (originally pointed

out in the author's paper of 1934) inherent in the very concept of fiducial

distribution of a parameter, and errors in algebra of probability laws. Since

the first references to the new principles outside of ordinary logic, which

supposedly justify the fiducial theory, were published after the publication

of Bartlett's criticisms, the latter seem to be perfectly justified and useful.

4. Owing to a certain flaw in the ideas underlying the fiducial theory

which is noticeable in passages quoted in § 4, it is impossible to insist on
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any definite attitude towards it, except that of doubt. It may be useful,

however, to express the following conjectures which seem to be very prob-

able. If they are wrong then they will be put right and, as a result, the

situation will be clarified.

The present author is inclined to think that the literature on the theory

of fiducial argument was born out of ideas similar to those underlying the

theory of confidence intervals. These ideas, however, seem to have been

too vague to crystallize into a mathematical theory. Instead they resulted

in misconceptions of "fiducial probability" and "fiducial distribution of a

parameter" which seem to involve intrinsic inconsistencies as described in

§ 5. In this light, the theory of fiducial inference is simply non-existent in

the same sense as, for example, a theory of numbers defined by mutually

contradictory definitions.

In earlier stages when the problems treated were very simple, the fallacy

involved in "fiducial probability" was not apparent. Later on, however,

difficulties appeared and the new principle "which cannot be deduced by

logic" seems to have been invented to disentangle them in one particular

case. But the word "principle" implies some generality, hence the drift in

comments on the same subjects treated in 1936 and again in 1939. From

the point of view of the direction of this drift it is perhaps significant that

Yates speaks of "fiducial statements" possible to make on the ground of

probabilities a posteriori and that the paper by Jeffreys which professes

the equivalence of fiducial theory with that of inverse probability appeared

in the Annals of Eugenics, edited by R. A. Fisher.

However this may be, the only thing that the present author ventures to

profess is that the theory of fiducial probability is distinct from that of

confidence intervals.
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Part 4. Stein's Sequential Procedure

(Based on a lecture at the Department of Statistics, University College, London, deliv-

ered in March, 1950.)

When Professor Egon S. Pearson invited me to speak to you, he sug-

gested that I describe some of the more outstanding results obtained in

the United States during the last decade, which, because of war conditions,

may not have received the attention that they deserve. As far as I can see,

the most interesting result of this description is due to Charles M. Stein.

With Professor Pearson's and your permission, the subject of my today's

talk will be a brief account of Stein's Sequential Procedure in estimating

the mean of a normal distribution. Stein's paper1 was published in 1945.

However, in order to appreciate fully his result and, also, in order to give

due credit to another friend of mine, Dr. Joseph Berkson, I shall begin my

story a little earlier.

As you know, one of the earliest results in the theory of confidence

intervals is the short unbiased confidence interval for the mean £ of a

1 Charles M. Stein: "Two-sample test of a linear hypothesis whose power is inde-

pendent of the variance." Annals of Math. Stat., Vol. 16 (1945), pp. 243-258.
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normal distribution with an unknown variance a2. If x and s2 stand for

the sample mean and for the estimate of variance of this mean, based on

/ degrees of freedom, then the confidence interval of the unknown mean £

is given by

x - st g £ g x + st (1)

where t is taken from Fisher's tables in accordance with the selected con-

fidence coefficient <x and the number of degrees of freedom /. I have been

describing this result in my lectures since about 1930, and it was first used

by W. Pytkowski2 in his booklet published in 1932. The theoretical back-

ground is given in my J.R.S.S. paper of 1934. Finally, the corresponding

result based on fiducial argument was published by R. A. Fisher in 1935.

Furthermore, in my paper of 1937 published in the Phil. Trans. Roy. Soc,

London, I have shown that the confidence interval (1) has the remarkable

properties of "unbiasedness" and "shortness." "Unbiasedness" means the

property that, while the true value of £ is covered by (1) with the pre-

assigned frequency a, any other value is covered by (1) less frequently.

"Shortness" means that, given a false value £' of £, the confidence inter-

val (1) covers g less frequently than (or at most as frequently as) any

other unbiased confidence interval corresponding to the same confidence

coefficient a.

Analytically, these properties are expressed as follows. The property

serving as the definition of a confidence interval {£i(E), ^(E)} is

P{$i(E) g £ ^ b(B) | |, a} a a. (2)

Here, as usual, the letter E stands for the random "event" point, i.e. for the

set of all the observable random variables. The property of unbiasedness

is expressed by the relation

P{lti(E) g ?' £ fc(fl) | |, a) =S PffcCE) g $ Z b(E) | *, <r} (3)

valid for all values of £, £' and a. Finally, the property of shortness, applica-

ble to (1), is written as

P{*-at£r3S* + *| t, °} ^ P\h(E) g r ^ ME) I J, <r} (4)

for all confidence intervals (£i(.E), h(E)} satisfying (2) and (3), and for

all £, £' and a.

1 must admit that, having obtained this result, I thought that I had

found a grand thing, not only interesting theoretically, but also important

practically, and felt naively proud. Unfortunately, this inordinate pride

was soon punctured by a letter from Dr. Berkson, expressed in polite terms

but making it quite clear that the practical importance of the confidence

2 See references in part 3 of this Chapter.
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interval (1) is rather limited. The humiliating part of the story is that

Joseph Berkson is an M.D. and a practical, rather than a theoretical statis-

tician, while I am supposed to be working in theory. Yet a delicate point

regarding the confidence interval (1) was noticed by Berkson and over-

looked by me. In this connection it seems appropriate to paraphrase the

celebrated description of Chevalier de Mere due to Pascal which, at tea

time, you see on the wall of the Common Room: 3 II n'est pas geometre,

mais il a tres bon esprit et ga, comme vous savez, est un grand avantage. . . .

The practical defect of the confidence interval (1) noticed by Berkson is

that its length, viz. 2st, is a random variable and, what is more, a variable

capable of assuming arbitrarily large values. In fact, by looking up Elder-

ton's tables relating to the distribution of x2, it is easy to compute the

probability that the length of confidence interval (1) will exceed any pre-

assigned limit. In order to appreciate the practical importance "of this fact,

imagine an M.D., engaged in some sort of routine analysis, applying interval

(1) to estimate, say, the average sugar content in a patient's blood. This

estimate is needed in order to adjust appropriately the dose of an injection.

If we grant all the approximations involved, it is obvious that frequently

the particular determinations used by the M.D. will be concordant and the

value of s will be small. In these cases, assertions (1) regarding the true

value of £ will be usable. However, in other cases the value of s will be

large and then the assertion regarding £ will be so vague, say from zero to

100 per cent, as to be meaningless.

Cases of this kind are, of course, familiar and you must have come across

a substantial literature dealing with so-called "gross errors." Gross errors

must occur from time to time. However, the situation I have in mind is

not concerned with gross errors but only with such variation of the estimate

s as is implied by the postulated normal distribution of the particular deter-

minations.

Faced with the abnormal length of the confidence interval for the mean

sugar content £, the M.D. can do only one thing: not use this confidence

interval. This may be followed by taking another sample of blood and

making a new series of determinations, or by computing a new confidence

interval based on some of the original determinations after rejecting sus-

pected "gross errors." But these further steps concern us less than the

predominant fact that a universal application of confidence interval (1) is

3 Since the time of Karl Pearson, the decorations of the Common Room (where a

friendly visitor may get tea at 3.45 p.m., irrespective of whether he—or she—is mathe-

matically minded or not) include the following quotation from Pascal, written in

beautiful Gothic:

"II a tres bon esprit; mais il n'est pas geometre; c'est,

comme vous savez, un grand defaut."
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impractical. Its use is limited to cases where the value of the estimated

standard error s does not exceed a certain (no doubt, only vaguely deter-

mined) limit t. This, however, implies that the confidence interval (1) is

not used at all.

This is a point of some delicacy and it is worthwhile to emphasize it a

little. As I have already mentioned, the term "confidence interval cor-

responding to the confidence coefficient a" is used to describe the interval

between two functions of the observable random variables £i(E) and ^(E)

having the property of bracketing the true value of the estimated param-

eter £ with the preassigned probability a. If we equate

ME) = x-st,

h(E) = x + st

and use these two functions consistently to estimate £, irrespective of the observed

values of x and s, then the long run relative frequency of successful estimates

will actually be a. However, if we restrict the use of these formulae to cases

where s ^ t, then, strictly speaking, our estimating interval will not be

bounded by functions %i(E) and £2(E) denned above but by two new func-

tions, say £i*(E) and %2*(E) defined as follows.

$,.*(#) = |,(.E) whenever s g t,

£i*(E) not defined otherwise,

for i = 1, 2. For convenience of reference, the interval (£i*, £2*) will be

described as the curtailed confidence interval for £.

Unexpected as it may seem, the two functions %i*(E) and %2*(E) do not

possess the properties of confidence limits, because the probability that they

will bracket the true value of £ is less than a and depends on the value of a.

Let us compute this probability, say P. This is the conditional probability,

given s ^ t, that

x — st ^ £ ^ x + st

where | represents the true value of the expectation of x. We have

p = p{s* 7\7} (5)

In order to evaluate the denominator, we need the probability density function

of s, say,

JL^-ig-nW (6)

where c is a numerical factor, independent of a.
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258 MATHEMATICAL STATISTICS AND PROBABILITY

In order to compute the numerator, in addition to (6) we need the proba-

bility density function of x,

Vn e-n(S-f)V2««. /7)

a/2t

<T

Owing to the independence of x and s, the joint probability density function

of x and s is simply the product of (6) and (7). The numerator in (5) is

</J0 I <rV2irJ£ J

Similarly,

P{s^r\a} =-. fV-V-^^A.

<r J0

The integrals simplify if we substitute

Vn(x - f)

= u,

a

then let

and, finally, put

Vn- = ».

<r

Then

c fry/n/c

P{{s £ r)(| £ - f | ^ si) | £,,r} = — v*-1*-* /2G(vt) do,

n" Jo

P{^rM=-i^ v*-h-*'*dv,

Jnryfn/a

vf-h-fv/2G{vt) dv

0

and

P =

Jo

It is seen that P is a weighted average of quantities

G(vf)
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where, for each v, the weight is represented by

Since G(x) is a monotone function of x, increasing from zero to unity as x

grows from zero to infinity, it is obvious that P depends on a and, namely,

that as a is increased from zero to infinity, the value of P decreases from a

to zero. Thus, if t is fixed in one way or another, and we make assertions

about £ in the form

x - st ^ £ ^ x + st (9)

only if s ^ t, then the probability of this assertion being correct is always less

than the chosen confidence coefficient a and, if a happens to be large, is close

to zero. It follows that interval (9) used only when s g t, is not a confidence

interval.

As you know, the properties of confidence interval (1) are connected with

Student's distribution. This has an extensive use in testing Student's

hypothesis which ascribes a specific value £0 to the mean £ of the normal

distribution but fails to specify the value of the standard error a. Student's

test consists of the rule to reject the hypothesis tested when the criterion

| * - fe |

s

exceeds a specified value t.

This test was proved4 to be unbiased of type Bl, which means that it is

the most powerful test of all tests which are unbiased. Yet, you must be

aware of the fact that it has an unpleasant property. This property is that

the power function of this test depends on the unknown value of a. In fact,

the argument of the power function is

= Vji,

where £ stands for the true value of the mean. As p is increased, the power

function tends to unity and there are some tables from which its values can

be read. One of the uses for which these tables are intended is to estimate how

large should n be in order to have a reasonable chance of detecting the false-

hood of the hypothesis when the true mean £ differs from the hypothetical

value £0 by a stated amount. Upon inspecting the expression for the argu-

ment of the power function you will see that, when nothing is known about a,

it is impossible to answer this question. In fact, however large be n, if <r

is sufficiently large, then p will be as small as desired and the value of the power

function close to the chosen level of significance.

4 J. Neyman: "Sur le verification des hypotheses statistiques composees." Bull. Soc.

Math, de France, t. 63 (1935), pp. 246-266.
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When we have some knowledge of a, for example if we know that a cannot

exceed a specified limit, then the tables of the power function of Student's

test can be used to estimate the upper bound of n needed to insure that the

power function does not fall below a desired level. Similarly, if we know

the upper bound of a, we can select sufficiently large values of tVb so that

the probability P of success in estimating £ using the curtailed confidence

interval be at least equal to a specified value a. In many cases the value of

a is not entirely unknown and then both the power function and the curtailed

confidence interval for £ are usable. Otherwise, we face a very unpleasant

difficulty.

As you know, the properties of a test are determined by the corresponding

critical region. Similarly, the properties of a confidence interval are those

of the corresponding regions of acceptance.

With this in mind, a question occurred to me as to whether or not it is

possible to find critical regions for testing Student's hypothesis and regions

of acceptance for estimating £ having more satisfactory properties. From the

critical region, w, we would require that it correspond to a preassigned level

of significance,

P{Eew\ fo, <r} =e

and that for sufficiently large values of | £0 — £ |, the power function /S(£,

a | w) of the region w have sufficiently large values irrespective of the value

of <r. Of course, it would be most satisfactory if 0(£, a \ w) were independent

of a and could tend to unity as | £0 — £ | is increased. As regards the regions

of acceptance, we would require that they correspond to the preassigned con-

fidence coefficient a and that the length of corresponding confidence intervals

never exceed a fixed finite number M.

It is easy to see that there is a connection between the two questions. In

fact, a negative answer to the question regarding the critical region implies

a negative answer to the question regarding the regions of acceptance. To see

this, assume for a moment that a system A of regions of acceptance A(Q is

found, corresponding to the confidence coefficient a = 1 — e, such that the

length of the corresponding confidence intervals does not exceed M. We shall

see that this assumption implies the existence of a critical region w correspond-

ing to the level of significance « and such that, whenever | £0 — 11 > M,

the power function

/Bft, «r | w) £ 1 - •

irrespective of the value of a.

In order to prove this proposition, notice that, if | £0 — £ | > M, then no

confidence interval can cover both £ and £0. This means that the region of

acceptance A(£) and the region of acceptance A(£0) have no points in com-

mon. In other words, A{£) lies entirely within the region w = W — A(£0)-
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Now select the region w = W - A(£0) as the critical region for testing

Student's hypothesis that ascribes to £ the value £o. Using the basic prop-

erty of the region of acceptance, we have

P{EeA(l.o)\$0,<r} « a - 1 - e.

Hence

P{E ew\ £0, °) = 1 - « = «•

Thus, the region w corresponds to the preassigned level of significance.

Assume now that the hypothesis tested is false and that the true value £

differs from £0 by more than M. The value of the power function correspond-

ing to this value is

0U, a\w) =P{Eew\l, *}.

But, as we have noticed above, the region w includes A(g). Hence

|8(£, <r|u>) ZPlE€A(Z)\i,a)*ml - e,

irrespective of the value of a. Q.E.D.

The questions just described were attacked by Dr. George B. Dantzig,

then a colleague of mine, and were answered in the negative. Studying the

structure of regions similar to the sample space with regard to <r, while £ = £0

is kept fixed, Dantzig found that, if the power function of such a region is

independent of a, then the region is similar to W not only with respect to a,

but also with respect to £ and, therefore,

£(£, a | w) m e

identically in £ and a. This result appeared in print.6 Furthermore, Dantzig

proved a more general proposition: Whatever be the region w, similar to the

sample space with respect to a, when £ = £0, and whatever be £i ^ £o, the upper

limit of its power function /8(£, a \ w) as <r -» oo cannot exceed e. The proof

of this proposition is very simple. It is known6 that the asymmetric Student's

test has the property of being the uniformly most powerful test of Student's

hypothesis tested against the set of admissible hypotheses ascribing to the

mean £ values on one side of the hypothetical value £0. Assume, for example,

that £i > £o. Then the most powerful test of the hypothesis that £ = £0

tested against the alternative £ = £i has its critical region, say w, defined by

the inequality,

x > £o + st(e),

5 George B. Dantzig: "On the non-existence of tests of Student's hypothesis having

power functions independent of a" Annals of Math. Stat., Vol. 11 (1940), pp. 186-192.

6 J. Neyman and E. S. Pearson: "On the problem of the most efficient tests of statis-

tical hypotheses." Phil. Trans. Roy. Soc, London, Ser. A, Vol. 231 (1933), pp. 289-337.
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where t(e) is a suitable constant. It follows that

0(£i, a | w0) ^ /3fe, <r | w).

However, it is known that

lim /3(£i, <r | wo) = e,

«r -► oo

and it follows that

sup lim )S(£i, a \ w) ^ e.

a -> oo

Thus, within the n-dimensioned space W there are no "satisfactory" critical

regions for testing Student's hypothesis and, consequently, there are no sys-

tems of regions of acceptance which generate confidence intervals whose

length is bounded, i.e. does not exceed a fixed number M.

As you see, the situation is unsatisfactory. It was in this unsatisfactory

state that it was faced by Stein, then in the United States Army. He had

been assigned to study some statistical problems connected with weather fore-

casting and, hence, forced to learn some theory of statistics.

There were, among the things that Stein read, the now celebrated papers of

Abraham Wald, dealing with so-called "sequential analysis," which, however,

seems to be more appropriately called "sequential procedures." Generally,

a sequential procedure in testing a statistical hypothesis consists of a repeated

application of a triple rule: (a) to reject the hypothesis tested on data avail-

able, (b) to accept it on the same data or (c) to make a specified number of

fresh observations. You begin by observing, say, ni random variables Xi,

X2, • • •, Xni. The totality of these observations is represented by the sample

point Ei, in the ni dimensioned space Wi. The space Wi is divided into three

parts, Wi(a), Wi(b), Wi(c), and, following the determination of Eu the statis-

tician takes action a, bore according to whether Ei falls in Wi(a), in Wi(b) or

in Wi(c). In the latter case, he makes n2 fresh observations X„1+1, Xnl+2,

• • ., Xni+ni. This number n2 may be preassigned or, again, it may be a

random variable, a function of Ei. If n2 is a fixed constant, then the n2

new observations combine with the original ni to determine a point, say E2,

in the ni + n2 dimensioned space W2. If n2 is a random variable capable of

assuming arbitrarily large values, then, in order to "accommodate" the sample

point E2 it is necessary to consider the space of infinitely many dimensions.

This is also true in the frequent case where at every stage of sampling there

exist possible sample points at which the statistician will take more and more

observations.

Early writings of Wald and of his colleagues were mostly concerned with

sequential sampling procedures of testing a simple hypothesis against a single

simple alternative. However, these writings inspired Stein with the idea that

spaces with infinitely many dimensions are somewhat "wider" than spaces
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of a finite number of dimensions. Hence, if in the spaces of finitely many

dimensions there are no desirable critical regions for testing Student's hypothe-

sis nor desirable regions of acceptance for estimating the mean of a normal

distribution, such regions may exist in the space of infinitely many dimen-

sions. After some effort, Stein invented a two-step sequential procedure

which proved that his presumption was correct.

Using this procedure we obtain a test of Student's hypothesis corresponding

to a preassigned level of significance e, with a power function independent

from a and tending to unity as the "error" of the hypothesis tested is increased.

Moreover, for any given £ 5^ £0 it is possible to arrange that the power func-

tion at the point £ be equal to a preassigned value 0 > 0, as close to unity as

desired.

The same sequential procedure leads to confidence intervals for the esti-

mated £ which both correspond to a preassigned confidence coefficient a and

have a preassigned length 2A. The originality of the idea and the elegance

of the solution are above all praise.

I shall begin by explaining Stein's procedure of obtaining the confidence

interval. Next I shall show that it has the properties indicated. Thereafter

the procedure of testing Student's hypothesis will be more or less evident.

Let a and 2A denote, respectively, the preassigned confidence coefficient and

the preassigned length of the confidence interval. Stein's procedure consists

of making two sets of observations. The first set of an arbitrary number

ni ^ 2 of observations

•Ai, -^2, . • •, An,

is obtained and certain calculations are made. The result of these calcula-

tions determines the number 712 ^ 1 of observations

of the second set. Then the two sets are combined to determine the confidence

interval for the unknown mean £ of the normal distribution sampled.

The calculations relating to the first set of observations, leading to the

value of n2 are as follows. Denote by r (a) the value of Fisher's t corresponding

to the number of degrees of freedom ni — 1 and to the confidence coefficient

a. In other words, r{a) is the root of the equation

r*M dt r" dt

Having read r(a) from Fisher's tables, we compute the expression

.2

-m

(10)
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where S2 is the estimate of variance computed from the first set of observations

with

s2 = —!— E (*« - W

»i - i t=i

i ni

Now we determine n2. If 8 is less than «i, then we put n2 = 1. Otherwise,

if 8 ^ ni, then n2 is given the value equal to the least integer which exceeds

8 - ni. It will be seen that in either case

ni + n2 > 8. (11)

We shall need this inequality at a later stage. It will be seen that the

greater S, the greater the value of n2.

When the value of n2 is determined, we make the second set of observations

and compute the corresponding mean, say

i ni+nj

X2 = — z2 %i'

n2 i-ni+1

Stein's confidence interval for f is then given by the following formula

aXr + (1 - a)X2 - A g U all + (1 - a)X2 + A (12)

where the value of a is obtained from the equation

a2 (1 - a)2 1

- + " - = -'. (13)

ni n2 8

You will observe that the difference between the extreme parts of (12) is

equal to 2A. Thus, the only thing which requires proof is that, given that

the mean of the sampled normal distribution is £, the probability

P {aXi + (1 - a)X2 - A g fg oli + (1 - a)X2 + A | f, o) = a.

This identity can be rewritten as

P{\ aXi + (1 - a)X2 - * | g A | f, <r} - a. (14)

In order to prove (14) we first verify that, with the described selection of

the value of n2, equation (13) has real roots. Upon multiplying by nin28

and sorting out terms, this equation may be rewritten as

(nx + n2)8a2 - Intfa + ni(0 - n2) = 0
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and the two roots are

ni8 ± V nin29(ni + n2 - 0)

Ol,2 = •

(ni + n2)0

Because of (11) the roots are real. Either one can be used in (12).

The proof of (14) is based on the following elements. The mean Xi is

independent of S and is normally distributed about £ with variance a2/ni.

The number n2 is a single valued function of S, and hence a random variable.

So also is a. The mean X2 depends on S only through the number n2 of

observations on which it is based. Thus, for a given S, the conditional

distribution of, say,

X - oXi + (1 - a)l2

is normal, with expectation

E(X) - o{ + (1 - a)t ■ *

and variance

\ni n2 /

It follows that the conditional distribution, given S, of

aZi + (l_-_a)£2_-j

| (1 ~ ^)2

ni n2

is normal about zero with variance a2. A further consequence is that the

absolute distribution of the quotient

aX~x + (1 - a)X2 - I

SJ^+(,-°)a

ni n2

is Student's distribution with ni - 1 degrees of freedom. Thus recalling

the definition of r(a), we have

aXi + (1 - a)X~2 - 11

«.£+^

'Tii n2

However, because of (13) and (10) we have

(15)

r»i. n2 r(a)
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and it is seen that (15) coincides with (14). This completes the proof of the

assertion that (12) represents a confidence interval corresponding to the con-

fidence coefficient a.

As to Stein's test of Student's hypothesis, formula (14) is very suggestive.

As you must have guessed, if £0 is the value of the mean specified by the

hypothesis, the test criterion is, say

Y = al1 + (1- a)X2 - fo,

and the symmetric test consists in the rule of rejecting the hypothesis when-

ever | Y | exceeds A. According to formula (14), this test corresponds to the

level of significance e = 1 — a.

The test just described contains two arbitrary elements. One of them is

the level of significance e and its choice must be governed by considerations

of the importance of avoiding errors of the first kind. The choice of e deter-

mines a and hence r(a). The second arbitrary element in the procedure is

A. In the theory of Stein's confidence interval, A plays an independent role.

It represents one-half of the length of the confidence interval and is selected

as such. I shall now show that in the theory of Stein's test of Student's

hypothesis, the arbitrariness of A may be used to insure that for a given value

of the difference [ £0 — £ | the power function of the test has a preassigned

value j3.

Denote by /?(£ [ A) the power function of Stein's test. If £ stands for the

true value of the mean, we have

P(t\A) = l-P{\Y\ g A|£,<r}.

The value of the probability in the right hand side is easily computed by

noticing that

Y = (alt + (1 - a)X2 - £) + (? - &)

and by recalling that

aXt + (1 - a)X2 - $ t(«) _

ni rc2

(oT, + (1 - a)X2 - |)

follows the Student's distribution with ni — 1 degrees of freedom. Easy

algebra gives

P{ | Y | ^ A |£, <r} =

P{6(£, A) - r(a) g ^ (aXi + (1 - a)X2 - {) g 6ft, A) + r(«) | £, a],

A

(16)
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where, for the sake of brevity,

t(«)

6«, A) - -Y- (& - Q.

A

It follows that P{\ Y | g A | £, <r} is equal to the integral of Student's proba-

bility density function with r^ — 1 degrees of freedom taken over the interval

of length 2r(a) centered at 6(£, A). Therefore the power function is

~b+T

Jh—r I

dt

/ t2 \n,/2

m I a) = i

J'/

dt

& \ ni/2

' —oo

Obviously, for fixed t(a) and £ j£ £0, the value of | &(£, A) | is close to zero

when A is large and goes to infinity as A decreases. At the same time the

value of j8(£ | A) varies continuously from e to unity. Thus, for given values

£ and /3, the value of A can be adjusted so that /?(£ | A) = j8. Q.E.D.

Casual inspection of formula (16) may cause a sensation of surprise at the

conclusion just reached. However, this sensation disappears when one re-

calls that a change in the value of A makes a change in the value of

0

-S

and this, in turn, influences the number n2 of observations of the second set

on which the mean X2 is calculated. The greater the desired power corre-

sponding to a given £, the smaller must be A, the larger d corresponding to an

observed S, and the larger n2. Thus, with Stein's procedure, we can pre-

assign both the level of significance e = 1 — a and the power corresponding

to a chosen size of error in the hypothesis, | £0 — 11- However, the more

exigent we are in either respect, the more observations will be needed to

achieve the desired goal.

The above account of Stein's work does not cover all of his results and,

if you study his paper, you will find it interesting and informative. Among

other things you will find in it the description of another procedure, slightly

more efficient than that described, and a generalization of these results to

the case of the general linear hypothesis.

The most essential advance achieved, as I presented it, consists in the

shift from studies of sample spaces having finitely many dimensions to

studies of the sample space of infinitely many dimensions, and the proof
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that in the latter there are various possibilities which are not available in

the former. Stein proved this point by giving an ingenious example. Now

the door is open for a search for an optimum sequential procedure. This

problem appears rather difficult, but Stein has already obtained some rele-

vant results which will soon appear in print.

I began this lecture with a reference to some correspondence with Joseph

Berkson in which he complained that, since the original confidence interval

(1) for estimating the mean of a normal distribution is unbounded and,

from time to time, must be inordinately long, a consistent use of this interval

in practical work is impossible.

Now, this difficulty seems to have been removed by means of Stein's work.

Brilliant as his result is, we must realize that its practical applications

involve a new difficulty, just as insuperable as that complained of by Berk-

son. This difficulty is connected with the fact that in the course of repeated

attempts to apply Stein's procedure, the observed value of S will be exceed-

ingly large from time to time and will determine a correspondingly large

value of n2. Likewise, it is obvious that, if the M.D., of whom I spoke at

the beginning of this lecture, is advised to make an additional n2 = 1,000,000

determinations of sugar in a patient's blood, he will refuse. Thus, in all

practical work it will be unavoidable to apply some sort of "curtailed"

Stein procedure. However, this conclusion need not inspire us with undue

pessimism. A strict accordance between practical work and a corresponding

theory is never possible and yet all our life is based on constant practical

applications of inapplicable theories. For example, we postulate that the

M.D.'s analyses follow a normal law of frequency whereas it is quite plain

that none of his determinations can be negative and none can exceed 100.

By assuming normality we substitute "improbability" instead of "impossi-

bility" and are content. So does Berkson. If he now complains of the

possibility of tremendous values of n2, we may point out that such values

are extremely improbable and may advise him to be satisfied by making a

reverse substitution of "impossibility" instead of "improbability."

Now, I wish to add a little postscript to the above lecture on Stein's

results and to the whole collection of lectures and conferences assembled

in this book. This postscript has to deal with the general character of

statistical research and with the ties that exist between the pure mathe-

matical theory of statistics and the applied work. I deeply regret the not

infrequent emphatic declarations for or against pure theory and for or
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against work in applications.7 It is my strong belief that both are important

and, certainly, both are interesting. The Berkson-Dantzig-Stein incident

just recounted provides an excellent illustration of the view that, thus far,

mathematical statistics is still in its early phase of development and that

the various fields of applied statistical work constitute the source of inter-

esting problems of theory. The results of Dantzig and Stein are certainly

contributions to pure theory of statistics. Yet, whether the two authors

are aware of the fact or not, the theoretical problems they solved originated

from difficulties in applied work. Further development of mathematical

statistics, and also the success of university instruction of statistics,

depend upon maintaining close contact and a harmonious balance between

mathematical direction of thought and the various fields of application.

7 Quite recently I was shown some letters regarding myself. One very nice person

wrote "I met Neyman. In general he is O.K., but hopelessly mathematical. . . ." The

letter of another equally nice person stated: "Once upon a time Neyman did some real

work. Now, however, he is interested in applications."
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