
Chi-square Tests

Suppose I’m a pollster and have voter prefer-

ences in the last election (these are assumed

to be multinomial probabilities)

Party Proportion
Republican .50
Democrat .46
Socialist .03
Other .01

It is now time for the next election and I would

like to find out if voter preferences have changed

Assume that I ask 1000 people what party they

would vote for if the election were held imme-

diately
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On the basis of previous proportions in the last

election, I can calculate the expected number

of votes for the various parties if voter prefer-

ences have not changed:

Party Expected Obtained
Republican 500 400
Democrat 460 535
Socialist 30 60
Other 10 5

The measure of discrepancy (between the ex-

pected and obtained distributions) has the form:

(500−400)2

500 + (460−535)2

460 + (30−60)2

30 +

(10−5)2

10 = 64.7
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When the total number of observations is large,

we can compare this value to what we would

expect under χ2
3;

P(χ2
3 > 7.82) = .05, so because we observe

64.7, we can reject the hypothesis that voter

preferences have not changed.

This statistic is called the chi-square (goodness-

of-fit) statistic, and we compare it to a chi-

square distribution. It was developed by Karl

Pearson about 1900.

Salient features of this example:

1) We have categorized our observations into

groups; called an “attribute”

2) The hypothesis is about the identity of two

populations: the previous voter preferences and

the current ones
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Before, we assumed normality (and so on), and

if the means were different, we rejected iden-

tity of populations; we did so because of the

strong initial assumptions.

Here, we do not have to make the same “para-

metric” assumptions; we have a “nonparamet-

ric” test

3)

Category Obtained frequency Expected frequency
1 fo1 fe1
2 fo2 fe2
...
J foJ feJ
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Use χ2
J−1 to find the critical value;

if
∑J

j=1
(foj−fej)

2

fej
is greater than the critical

value, reject the null hypothesis that the ob-

tained distribution comes from the expected

distribution

Called a test of “goodness-of-fit” of one dis-

tribution to another

4) We could theoretically calculate the proba-

bility (or obtain the sampling distribution of χ2

under the null hypothesis) of obtaining the ob-

served sample if the expected distribution were

the “true” one; we are looking for all samples

that lead to a value of χ2 greater than that ob-

served, i.e., the probability of seeing the sam-

ple you saw and all samples that would be more

deviant (in terms of the χ2 statistic)
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All this is based on the multinomial distribution

So, this use of the chi-squared statistic and

distribution is an approximation to the “real”

problem

5) We need large N (= sample size) for the

approximation to be any good

Also, each sample observation belongs to one

and only one category

Outcomes for the N observations are indepen-

dent; this may be a problem when one observa-

tion may imply something about another, e.g.,

voter preferences within the same family

6) The chi-square statistic is only approximately

distributed as χ2
J−1; we need large samples for

two things:
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a) for the chi-square statistic to provide a way

to get a good approximation to the actual sum

of multinomial probabilities

b) the chi-square statistic is only approximately

distributed as χ2
J−1, but improves as sample

size increases

7) Guidelines: if J = 2, then both expected

frequencies should be greater than 10; for J >

2, the expected frequencies should be greater

than 5.

This is usually conservative

8) Suppose we have two categories:

category expected observed
1 fe1 fo1
2 fe2 fo2
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χ2 = (fe1−fo1)
2

fe1
+ (fe2−fo2)

2

fe2

and we use χ2
1 for the critical value

Before, for large samples we used the normal

approximation to the binomial:

to test Ho : p = po versus H1 : p �= po, use

(fo1−Npo)/
√
Npo(1− po) compared to a N(0,1)

The chi-square statistic for two categories is

of the same value as

[(fo1 −Npo)/
√
Npo(1− po)]2

So, we could use either method
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A somewhat better approximation in this case

is to use

χ2 =
(|fe1−fo1|−1

2)
2

fe1
+

|(fe2−fo2|−1
2)

2

fe2

This is called Yates correction for continuity;

the binomial is discrete and the normal is con-

tinuous so this is thought to provide a better

approximation

There is some debate as to whether this is too

conservative
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Two-way Contingency Tables

An Example: A sample of students were ran-

domly selected from a given population; they

were assessed as to being from a private high

school or from a public high school; they were

all given a standardized achievement test with

the following results:

0-275 276-350 351-425 426-500 Total
Priv 6 14 17 9 46
Pub 30 32 17 3 82
Total 36 46 34 12 128

If we had some idea of the expected number

of people in the categories, we could do a chi-

square test as in our voting example. Here, we

would have eight categories and use χ2
7 for the

critical value. We don’t estimate any parame-

ters to lose degrees of freedom.
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Suppose our hypothesis is that the attribute

“school type” is independent of “test score”

Let B1 ≡ private

B2 ≡ public

A1 ≡ 0-275

A2 ≡ 276-350

A3 ≡ 351-425

A4 ≡ 426-500

We define certain probabilities based on our

selection of people from the population: e.g.,

P(B1) = probability of an observation belong-

ing to a private school;
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P(A1) = probability of an observation belong-

ing to the test range of 0-275;

P(B1, A1) = probability of an observation be-

longing to private school and test range 0-275;

and so on

Our interest is in the hypothesis that attributes

A and B are independent:

P(Ai,Bj) = P(Ai)P(Bj) for all i and j

and the expected values under independence

have the form NP(Ai)P(Bj)

We need to estimate the P(Ai) and P(Bj) be-

fore we can obtain numerically the expected

values under independence; we do this as fol-

lows
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estimated P(Ai) (≡ ̂P(Ai) =) frequency of Ai

divided by N

estimated P(Bj) (≡ ̂P(Bj) =) frequency of Bj

divided by N

Thus, the estimate under independence for cell

(Ai,Bj):

N ̂P(Ai)
̂P(Bj) =

row total for Ai times the column total for Bj

divided by N

For our example:
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category expected (under independence) (O−E)2

E

(A1, B1) 12.9 3.69
(A2, B1) 16.5 .38
(A3, B1) 12.2 1.89
(A4, B1) 4.3 5.14
(A1, B2) 23.1 2.06
(A2, B2) 29.5 .21
(A3, B2) 21.8 1.06
(A4, B2) 7.7 2.87
Sum 128.0 17.3

We start with 8 cells, so we have 8 - 1 = 7

degrees of freedom to start with; we estimate

4 parameters so we have 3 left over:

degrees of freedom = (number of rows - 1)(num-

ber of columns - 1)

We reject independence at α = .05 since P(χ2
3 >

7.82) = .05
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Notice, the row marginal frequencies are not

fixed but only the total sample size of N ; we

have multinomial sampling over the 8 cells of

the contingency table

If the row marginal frequencies were fixed, we

have a “homogeneity of parallel samples” prob-

lem; in this case, two multinomial distributions

are “stacked on top of each other”; we would

carry out the same strategy, however
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Example: row and column frequencies both
fixed

A subject has to learn 25 words; he/she is given
25 blue cards with one word on it: 5 nouns, 5
adjectives, 5 adverbs, 5 verbs, 5 prepositions

The subject must pair each of the blue cards
with 25 white cards each containing a word;
the same distribution of parts of speech apply

5 minutes are allowed to pair and 5 minutes to
study the pairs so formed; after, a white card
word is given and the subject has to give the
blue card word

The null hypothesis is that there is no or-
ganization of pairs according to the parts of
speech; the alternative hypothesis is that sub-
ject pairs particular parts of speech on the blue
cards with particular parts of speech on white
cards – not necessarily the same parts, however

Here’s the data for one subject:
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blue
card

noun adj adv verb prep total
white noun 0 3 0 0 2 5
card adj 4 1 0 0 0 5

adv 0 0 0 5 0 5
verb 0 0 5 0 0 5
prep 1 1 0 0 0 3

total 5 5 5 5 5 5 25

The expected frequency for each cell is 1 (and

is a special case where the “guideline” on ex-

pected frequencies does not apply)

the chi-square statistic is

(0−1)2

1 + (3−1)2

1 + · · ·+ (3−1)2

1 = 66

on 16 degrees of freedom;

this is significant since P(χ2
16 > 26.30) = .05
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Multinomial sampling over the whole I × J ta-

ble;

Ho : pij = pi+p+j

1 · · · J
1 ...
... · · · pij · · · pi+
I ...

p+j 1.0

————

Homogeneity of parallel samples

Ho : p1j = · · · = pIj for 1 ≤ j ≤ J
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1 ... J
1 p11

... p1J 1.0
2 p21

... p2J 1.0
...
I pI1

... pIJ 1.0
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The 2×2 special case – two independent sam-

ples

Population:

alive dead
1 p11 p12 1.0
2 p21 p22 1.0

Data:

alive dead
1 n11 n12 n1
2 n21 n22 n2

Ho : p11 = p21 = p
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(n11
n1

=)p̂11 ∼ N(p11,
p11(1−p11)

n1
)

(n21
n2

=)p̂21 ∼ N(p21,
p21(1−p21)

n2
)

p̂11− p̂21 ∼ N(p11− p21,
p11(1−p11)

n1
+ p21(1−p21)

n2
)

p̂11−p̂21−(p11−p21)√
p11(1−p11)

n1
+

p21(1−p21)
n2

∼ N(0,1)

Under Ho:

p̂11−p̂21√
p̂(1−p̂)( 1

n1
+ 1

n2
)
∼ N(0,1)

where p̂ = n11+n21
n1+n2

The square of this is a chi-square with one

degree of freedom; this is numerically the same

as the goodness-of-fit statistic
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Row and Column sums fixed; the correlational

randomization paradigm is used to obtain the

distribution for the statistic of choice, e.g., the

chi-square test statistic for association

The null hypothesis is that the column labels

are randomly assigned to the row labels

1 · · · J
1 ...
... · · · nij · · · ni+
I ...

n+j n
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