
Comparisons among means (or, the analysis of

factor effects)

In carrying out our usual test that μ1 = · · · =
μr, we might be content to just reject this

“omnibus hypothesis” but typically more is re-

quired:

where are the differences coming from?

We will discuss comparisons among means as a

way of investigating where the differences are

and not merely that some differences exists

We make some distinctions at the outset:

Two classes of comparisons:
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a) Planned (or a priori) comparisons: you have
specific ideas of where differences in the means
should be. These are to be used in place of
doing the overall F -test

b) Incidental (or Post-hoc) comparisons: after
you find a significant result from the omnibus
F -test, you want to find out what differences
in the means caused the rejection

We start with planned comparisons used in
place of the omnibus F -test

Example:

Suppose we are testing the effect of a number
of drugs on attention; four different drugs have
been suggested as possibly helpful:

Drug 1 Drug 2 Drug 3 Drug 4 Placebo
μ1 μ2 μ3 μ4 μ5

The subjects have been randomly assigned to
the five conditions
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I’m not particularly interested in the omnibus
hypothesis but in specific questions about the
differences in the means

For example:

a) the effect of each of the drugs versus the
placebo: e.g., μ1 − μ5

b) the average effect of drugs 1 and 2 ver-
sus the average effect of drugs 3 and 4: e.g.,
1
2(μ1 + μ2)− 1

2(μ3 + μ4)

c) differences between pairs of drugs: e.g., μ1−
μ2

d) the average of all drugs versus the placebo:
e.g., 1

4(μ1 + μ2 + μ3 + μ4)− μ5

A common aspect of all these questions is that
they can be phrased as linear combinations of
the means
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Definition: a population comparison (or con-

trast) among population means is a linear com-

bination of the population means:

L = c1μ1 + · · ·+ crμr =
∑r

i=1 ciμi,

where
∑r

i=1 ci = 0;

this latter condition will be discussed below

A sample comparison (or contrast) among sam-

ple means is a linear combination of the sample

means:

L̂ = c1μ̂1 + · · ·+ crμ̂r =
∑r

i=1 ciμ̂i,

where
∑r

i=1 ci = 0
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Why the condition
∑r

i=1 ci = 0?

∑r
i=1 ciμi =

∑r
i=1 ci(μ· + τi) =

∑r
i=1 ciμ· +

∑r
i=1 ciτi =

μ·
∑r

i=1 ci +
∑r

i=1 ciτi =
∑r

i=1 ciτi

So, a comparison is unaffected by the grand

mean, however defined when
∑r

i=1 ci = 0
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The sampling distribution of L̂:

L̂ =
∑r

i=1 ciμ̂i,

where μ̂i ∼ N(μi,
σ2

ni
), leads to

L̂ ∼ N(L, σ2
∑r

i=1
c2i
ni
)

E(L̂) = E(
∑r

i=1 ciμ̂i) =
∑r

i=1 ciE(μ̂i) =

∑r
i=1 ciμi = L

V ar(L̂) = V ar(
∑r

i=1 ciμ̂i) =
∑r

i=1 c
2
i V ar(μ̂i) =

∑r
i=1 c

2
i (

σ2

ni
) = σ2

∑r
i=1(

c2i
ni
)
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So, L̂−L√
σ2∑r

i=1
c2
i
ni

∼ N(0,1)

Or, L̂−L√
MSE

∑r
i=1

c2
i
ni

∼ tnT−r

So, we can test Ho : L = 0 or put a confidence

interval on L

Suppose

L = c1μ1 + · · ·+ crμr and

L
′
= ac1μ1 + · · ·+ acrμr

Then
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L̂
′−L

′√
MSE

∑r
i=1

(aci)
2

ni

=

a(L̂−L)

a

√
MSE

∑r
i=1

c2
i
ni

=

(L̂−L)√
MSE

∑r
i=1

c2
i
ni

This gets rid of fractions in comparisons so the

weights can be whole numbers
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Arbitrary linear combinations:

L̂ ∼ N(L, σ2
∑r

i=1
c2i
ni
) is appropriate for any ar-

bitrary linear combination

Thus, when c1 = 1, c2 = · · · = cr = 0

μ̂1−μ1√
MSE/n1

∼ tnT−r

But note that MSE is from the whole ANOVA

layout (i.e., there are more degrees of freedom

than usual)
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The Bonferroni Discussion:

Suppose I have specified a collection of planned

comparisons (L1, . . . , LK) that I would like to

study in lieu of doing the omnibus test.

We know how to test each Ho : Lk = 0 and

how to put a confidence interval on Lk

Should I just “blast away” and do each test or

confidence interval at say, α = .05? Or should

I try to be more safe and control the overall

error rate (and engage in “safe statistics”)

——————

To be more formal about the problem of mul-

tiple testing, suppose there are K hypotheses

to test, H1, . . . , HK, and for each, we set the

criterion for rejection at the fixed Type I error

value of αk, k = 1, . . . ,K.
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If the event Ak is defined as the incorrect rejec-
tion of Hk (that is, rejection when it is true),
the Bonferroni inequality gives

P(A1 or · · · or AK) ≤
K∑

k=1

P(Ak) =
K∑

k=1

αk .

Noting that the event (A1 or · · · or AK) can
be verbally restated as one of “rejecting in-
correctly one or more of the hypotheses,” the
experiment-wise (or overall) error rate is bounded
by the sum of the K α values set for each hy-
pothesis.

Typically, we let α1 = · · · = αK = α, and the
bound is then Kα.

Thus, the usual rule for controlling the overall
error rate through the Bonferroni correction
sets the individual αs at some small value such
as .05/K;

the overall error rate is then guaranteed to be
no larger than .05.
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Orthogonal Comparisons:

Consider two comparisons:

L1 =
∑r

r=1 c1iμi, where
∑r

i=1 c1i = 0

L2 =
∑r

r=1 c2iμi, where
∑r

i=1 c2i = 0

L̂1 and L̂2 are orthogonal (i.e., statistically in-

dependent) if

∑r
i=1

c1ic2i
ni

= 0

If the n’s are all equal, this reduces to

∑r
i=1 c1ic2i = 0
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For example, in our drug illustration (where

the n’s are all equal), consider the following

four comparisons:

L1 = μ1 − μ2

L2 = μ3 − μ4

L3 = μ1 + μ2 − μ3 − μ4

L4 = μ1 + μ2 + μ3 + μ4 − 4μ5

For r groups, there are at most r− 1 mutually

orthogonal comparisons
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Consider two comparisons:

L1 =
∑r

r=1 c1iμi, where
∑r

i=1 c1i = 0

L2 =
∑r

r=1
ni
nT

μi, the weighted grand mean

Then,
∑r

i=1((ci
ni
nT

)/ni =

1
nT

∑r
i=1 ci = 0

In other words, a comparison is independent of

the weighted grand mean
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If I define a Sum of Squares for a comparison

as:

SS(L) = L̂2/
∑r

i=1
c2i
ni
, and with a single degree

of freedom

To test Ho : L = 0, SS(L)/MSE ∼ F1,nt−r

If L1, . . . , Lr are mutually orthogonal, then SS(L1)+

· · ·+ SS(Lr−1) = SSTR

And a simultaneous test of L1, . . . , Lr against

zero is the same as our omnibus test based on

MSTR/MSE
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There is one point of view on dong planned

comparisons that I will refer to as the “or-

thogonal contingent” (Hays would fall into this

crowd)

If planned comparisons are orthogonal, then

sample analogues are “independent”. Thus, it

makes sense to test each at, say, .05, and not

worry about inflating the overall error rate.

Problems with this:

1) Comparisons may be independent, but the

tests are not (they all use the same MSE)

2) Even ignoring dependent tests you still should

control the overall error rate by using, say, a

Bonferroni correction

16



3) With unequal n’s in particular, orthogonality

is very weird; and even with equal n’s you may

not be able to ask all the questions that one

would like to

If you use Bonferroni, there is no need to limit

the number or kind of planned comparisons

carried out
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Incidental or Post-hoc comparisons:

In planned comparisons, no overall omnibus

test was performed

Now, suppose an overall test was done and we

reject the null hypothesis of equal means

We now want to find out where the difference

are

In other words, we want to test the significance

of any comparison

So, choose any comparison L
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To test Ho : L = 0, compare SS(L)/MSE to

(r − 1)Fr−1,nT−r

this is called “Scheffe’s procedure”

note the multiplier of (r − 1) and the increase

in the numerator degrees of freedom compared

to testing one planned comparison against zero

using F1,nT−r

So, post-hoc confidence intervals would have

the form:
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Scheffe Procedure:

L̂± (
√
(r − 1)Fα,r−1,nT−r)(

√
MSE

∑r
i=1

c2i
ni
)

One planned comparison:

L̂± (
√
Fα,1,nT−r)(

√
MSE

∑r
i=1

c2i
ni
)

Bonferroni correction with K planned compar-

isons:

L̂± (
√
Fα

K,1,nT−r)(

√
MSE

∑r
i=1

c2i
ni
)
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Scheffe’s procedure has two important proper-

ties:

a) If the overall F test is significant at α, then

at least one comparison will be significant at

α or better

This may not be the one you can ever make

sense of, however

b) The experiment-wise (overall) significance

level (i.e., the probability of rejecting one or

more comparisons against zero by chance) re-

mains at α no matter how many you do.

You pay for this, however, because any com-

parison is generally difficult to declare signifi-

cant post-hoc – for example, no pairwise com-

parison may be significant post-hoc
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Tukey’s Procedure (Honestly Significant Dif-
ference – HSD)

Suppose I plan to do all r(r − 1)/2 pairwise
comparisons of the means

We could do a Bonferroni correction to control
the overall error rate but a better procedure
(in the sense of shorter confidence intervals) is
Tukey’s procedure

We begin by assuming n1 = · · · = nr = n; con-
sider the r sample means in an ANOVA each
deviated from their means: Ȳ1·−μ1, . . . , Ȳr·−μr

Each of these is ∼ N(0, σ
2

n )

Thus,

max(Ȳi· − μi)−min(Ȳi· − μi)√
MSE/n

∼ q(r, nT − r)

this is the “studentized range” statistic
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Turning this around, we have

P(|(Ȳi·− Ȳ
i
′·)−(μi−μ

i
′)| ≤ qα(r, nT −r)) = 1−α

Thus,

Ȳi· − Ȳ
i
′· ±

√
(MSE/n) qα(r, nT − r)

holds for all i, i
′

This can be rewritten as

Ȳi· − Ȳ
i
′· ±

√√√√(MSE
r∑

i=1

c2i
ni

) (
1√
n
) qα(r, nT − r)

This is conservative if we use the above for

unequal n’s – this is called the Tukey-Kramer

method
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Tukey’s procedure is an alternative to our over-

all F test

We look at the confidence interval for the most

extreme pair – if zero is included, don’t reject

If we use this as our overall test, then at least

one pairwise comparison is significant post-hoc

In a sense, however, we just plan to do all

pairwise comparisons

Some have called it a Type IV error to use the

overall F test and then followup it up “post-

hoc” with Tukey’s procedure
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Some caveats on multiple testing:

The problem of multiple testing and the failure

to practice “safe statistics” appears in both

blatant and more subtle forms.

For example, companies may suppress unfavor-

able studies until those to their liking occur.

A possibly apocryphal story exists about tooth-

paste companies promoting fluoride in their

products in the 1950s and who repeated stud-

ies until large effects could be reported for their

“look Ma, no cavities” television campaigns.

This may be somewhat innocent advertising

hype for toothpaste, but when drug or tobacco

companies engage in the practice, it is not so

innocent and can have a serious impact on our

collective health.
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It is important to know how many things were

tested to assess the importance of those re-

ported.

For example, when given only those items from

some inventory or survey that produced signifi-

cant differences between groups, be very wary!



People sometimes engage in a number of odd

behaviors when doing multiple testing. We list

a few of these below in summary form:

(a) It is not legitimate to do a Bonferroni cor-

rection post hoc; that is, find a set of tests that

lead to significance, and then evaluate just this

subset with the correction;

(b) Scheffé’s method (and relatives) are the

only true post-hoc procedures to control the

overall error rate. An unlimited number of

comparisons can be made (no matter whether

identified from the given data or not), and the

overall error rate remains constant;

(c) You cannot look at your data and then

decide which planned comparisons to do;
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(d) Tukey’s method is not post hoc because

you actually plan to do all possible pairwise

comparisons;

(e) Even though the comparisons you might

wish to test are independent (such as those

defined by orthogonal comparisons), the prob-

lem of inflating the overall error rate remains;

similarly, in performing a multifactor analysis of

variance (ANOVA) or testing multiple regres-

sion coefficients, all of the tests carried out

should have some type of control imposed on

the overall error rate;

(f) It makes little sense to perform a multi-

variate analysis of variance before you go on

to evaluate each of the component variables.

Typically, a multivariate analysis of variance

(MANOVA) is completely noninformative as to

what is really occurring, but people proceed in

any case to evaluate the individual univariate

27



ANOVAs irrespective of what occurs at the

MANOVA level; we may accept the null hy-

pothesis at the overall MANOVA level but then

illogically ask where the differences are at the

level of the individual variables. Plan to do the

individual comparisons beforehand, and avoid

the uninterpretable overall MANOVA test com-

pletely.



Note the article on Random Field Theory on
the class web site:

This chapter is an introduction to the multiple
comparison problem in functional imaging, and
the way it can be solved using Random field
theory (RFT).

In a standard functional imaging analysis, we
fit a statistical model to the data, to give us
model parameters.

We then use the model parameters to look for
an effect we are interested in, such as the dif-
ference between a task and baseline.

To do this, we usually calculate a statistic for
each brain voxel that tests for the effect of
interest in that voxel.

The result is a large volume of statistic values.

...
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