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A Beginning Quotation

The invalid assumption that correlation implies cause is
probably among the two or three most serious and common
errors of human reasoning.
— Stephen Jay Gould
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Week 4: Correlation

— “Voodoo Correlations in Social Neuroscience”; the “culling”
or search for results in clinical trials and elsewhere, with a
subsequent failure to cross-validate what is found; more
generally, the problem of “double dipping”

Required Reading:
SGEP (119–140) —
Illusory Correlation
Ecological Correlation
Restriction of Range for Correlations
Odd Correlations
Measures of Nonlinear Association
Intraclass Correlation
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Film:

Florence Nightingale (65 minutes)

Snow (22 minutes)
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Pearson Product Moment Correlation Coefficient:
Definition

The association between two variables measured on the same
set of objects is commonly referred to as their correlation and
often measured by the Pearson product moment correlation
coefficient.

Suppose ZX1 , . . . ,ZXN
and ZY1 , . . . ,ZYN

refer to z-scores (that
is, having mean zero and variance one) calculated for our
original observational pairs, (Xi ,Yi ), i = 1, . . . ,N.

The correlation between the original variables, rXY , is defined as

rXY = (
1

N
)

N∑
i=1

ZXi
ZYi

,

or the average product of the z-scores.
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The Pearson correlation, rXY , only gives a measure of a linear
relation that might be present between two variables.

If some nonlinear form of association exists, other measures of
correlation should be used.

We will (eventually) discuss four possibilities:
1) Guttman’s (weak) monotonicity coefficient (µ2);
2) Goodman-Kruskal’s gamma (γ) coefficient (for a
contingency table with ordered classes);
3) Goodman-Kruskal’s lambda (λ) coefficient (for a
contingency table with unordered classes);
4) Spearman’s rank-order correlation coefficient (this is just the
Pearson correlation computed using the ranks of the values on
the two variables).
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The Importance of Scatterplots

1) To assess whether the type of association present might be
linear; we could impose scatterplot “smoothers” to evaluate the
type of association present;

2) To identify outliers and help figure out why these data points
might not be reflective of the general pattern that is present.

3) To help assess the influence of certain data points on the
correlation, e.g., by using the size and fill for a plotting symbol
to indicate the change in the correlation that would result when
the data point was removed.
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Correlation Does Not Imply Causation

Latin variants:
post hoc, ergo propter hoc (after this, therefore because of this)
cum hoc, ergo propter hoc (with this, therefore because of this)

Generally, the association we see between two variables might
be due to a “lurking” third variable.

A current insidious example: parents who blame children’s
autism on earlier receiving the MMR vaccine and who therefore
now refuse to vaccinate their children – the “herd immunity”
levels are dropping badly in some communities.
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A Correlation is a Symmetric Measure

Thus, the directionality of any possible causal inference is
unknown. Examples:

1) The positive correlation between winning football games and
the amount of ground yardage gained: “running the ball” does
not necessarily cause winning; winning may cause “running the
ball” to wind down the clock;

2) The positive effects seen for moderate drinking may be due
to individuals who besides leading healthy lifestyles also drink
moderately;

3) The greater the money a political candidate brings in may
not be the reason for winning; maybe greater electability leads
to more donations.
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Algebraic Restrictions on Correlations

It is possible to derive the algebraic restrictions present among
any subset of the variables based on the correlations among all
the variables.

The simplest case involves three variables, say X , Y , and W .
From the basic formula for the partial correlation between X
and Y “holding W constant,” an algebraic restriction is
present on rXY given the values of rXW and rYW :

rXW rYW −
√

(1− r2XW )(1− r2YW ) ≤

rXY ≤ rXW rYW +
√

(1− r2XW )(1− r2YW ) .
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An Example of Algebraic Restriction

Suppose X and Y refer to height and weight, respectively, and
W is a measure of age. If, say, the correlations, rXW and rYW
are both .8, then .28 ≤ rXY ≤ 1.00.

In fact, if a high correlation value of .64 were observed for rXY ,
should we be impressed by the magnitude of the association
between X and Y ? Probably not —

if the partial correlation between X and Y “holding W
constant” were computed with rXY = .64, a value of zero
would be obtained. All of the observed high association
between X and Y can be attributed to their association with
the developmentally related variable.
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A Two by Two Contingency Table: The Fourfold
Point Correlation

A related type of algebraic restriction for a correlation is
present when the distribution of the values taken on by the
variables include ties.

In the extreme, consider a 2× 2 contingency table, and the
fourfold point correlation; this is constructed by using a 0/1
coding of the category information on the two attributes and
calculating the usual Pearson correlation.

Because of the nonuniform marginal frequencies present in the
2× 2 table, the fourfold correlation cannot extend over the
complete ±1 range.

The achievable bounds possible can be computed (Carroll,
1961); and it therefore may be of some interest descriptively to
see how far an observed fourfold correlation is away from its
achievable bounds, and possibly, even to normalize the
observed value by such a bound.
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Guttman’s Coefficient of Monotonicity

The bounds of ±1 on a Pearson correlation can be achieved
only by datasets demonstrating a perfect linear relationship
between the two variables.

Another measure that achieves the bounds of ±1 whenever the
datasets have merely consistent rank orderings is Guttman’s
(weak) monotonicity coefficient, µ2:

µ2 =

∑n
i=1

∑n
h=1(xh − xi )(yh − yi )∑n

i=1

∑n
h=1 |xh − xi ||yh − yi |

,

where (xh, yh) denote the pairs of values being “correlated” by
µ2.

The coefficient, µ2, expresses the extent to which values on
one variable increase in a particular direction as the values on
another variable increases, without assuming that the increase
is exactly according to a straight line.
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It varies between −1 and +1, with +1 [−1] reflecting a perfect
monotonic trend in a positive [negative] direction.

In contrast to the Pearson correlation, µ2 can equal +1 or −1,
even though the marginal distributions of the two variables
differ from one another.

When the Pearson correlation is +1.00 or −1.00, µ2 will have
the same value; in all other cases, the absolute value of µ2 will
be higher than that of the Pearson correlation including the
case of a fourfold point correlation.
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Illusory Correlation

An illusory correlation is present whenever a relation is seen in
data where none exists.

Common examples would be between membership in some
minority group and rare and typically negative behavior; the
endurance of stereotypes and an overestimation of the link
between group membership and certain traits; or the
connection between a couple adopting a child and the
subsequent birth of their own.

Four decades ago, Chapman and Chapman (1967, 1969)
studied such false associations in relation to psychodiagnostic
signs seen in projective tests. For example, in the
“Draw-A-Person” test, a client draws a person on a blank piece
of paper. Although some psychologists believe that drawing a
person with big eyes is a sign of paranoia, such a correlation is
illusory but very persistent.
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Confirmation Bias

Several faulty reasoning relatives exist for the notion of an
illusory correlation.

One is confirmation bias, where there are tendencies to search
for, interpret, and remember information only in a way that
confirms one’s preconceptions or working hypotheses.

At an extreme, there is the trap of apophenia, or seeing
patterns or connections in random or meaningless data.

One particular problematic realization of apophenia is in
epidemiology when residential cancer clusters are identified that
rarely if ever result in identifiable causes.
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Texas Sharpshooter Fallacy

What seems to be occurring is sometimes labeled the Texas
sharpshooter fallacy, where a Texas sharpshooter fires at the
side of a barn and then draws a bullseye around the largest
cluster of bullet holes.

In identifying residential cancer clusters, we tend to notice
multiple cancer patients on the same street and then define the
population base around these.

A particularly well-presented popular article on these illusory
associations entitled “The Cancer-Cluster Myth,” is by Atul
Gawande in the February 8th 1999, New Yorker.



Correlation

Psychology
(Statistics)

484

Clinician’s Fallacy

Illusory relations occur commonly in our day-to-day interactions
with others. We have the clinician’s fallacy due to the
self-selected and biased sample of individuals whom a clinician
actually sees in practice.

Thus, we have the (incorrect) inference of a uniformity of
serious adult trauma for any instance of childhood sexual abuse
(see McNally, 2003, Remembering Trauma, for a
comprehensive discussion).

The representativeness of what is encountered should always be
kept in mind. Forms of selection bias appear constantly
because what is observed or heard results from its being
different than what usually happens.

Making inferences based on out-of-the-ordinary events is
generally not a good idea.
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Ecological Correlation

An ecological correlation is one calculated between variables
that are group averages of some sort; this is in contrast to
obtaining a correlation between variables measured at the level
of individuals.

Several issues are faced immediately with the use of ecological
correlations:

they tend to be a lot higher than individual-level correlations,

and assuming that what is seen at the group level also holds
automatically at the level of the individual is so pernicious that
it has been labeled the “ecological fallacy” by Selvin (1958).
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The specific instance developed by Selvin concerns the 19th
century French sociologist Émile Durkheim and his contention
that suicide was promoted by the social conditions inherent in
Protestantism.

This individual-level inference is not justified from the data
Durkheim actually had at the aggregated level of country,
which did show a relationship between the levels of
Protestantism and suicide.

As is true in interpreting any observational study, confounding
variables may exist; here, it is that that Protestant countries
differ from Catholic countries in many ways other than religion.

Durkheim’s data do not link individual level suicide with the
practice of any particular religious faith; and to do so is to fall
prey to the ecological fallacy.
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Ecological Regression

Suppose our interest is in the estimation of support for a
specific candidate among Hispanic and non-Hispanic voters.

For each electoral precinct, the fraction, x , of voters who are
Hispanic is known, as is the fraction, y , of voters for the
candidate.

The problem is to estimate the fraction of Hispanic voters for
the candidate, which is unknown because of ballot secrecy.

A regression equation is fitted to the data having the form

yi = a + bxi + εi ,

where xi is the fraction of Hispanic voters in precinct i , yi is
the vote fraction for the candidate, and εi is the error term.
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Least squares estimates of a and b are denoted by â and b̂.

Here, â is the height of the regression line at x = 0,
corresponding to precincts having no Hispanic voters; â + b̂ is
the height of the regression line at x = 1, and interpretable as
the fraction of Hispanic voters supporting the candidate.

Justifying the statistical procedure requires invoking the
“constancy assumption”—voting preferences within ethnic
groups do not systematically depend on the ethnic composition
of the area of residence.

Strong conditions such as the constancy assumption are
generally unverifiable but must be assumed true.
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Aggregation causes problems across several disciplines:

Aggregation bias in econometrics refers to how aggregation
changes the micro-level structural relationships among the
economic variables of interest; explicitly, aggregation bias is a
deviation of the macro-level parameters from the average of the
corresponding micro-level parameters.

Or in psychology, the models we fit and evaluate at the group
level may be very different from what is operative at the level
of the individual subject.
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The fundamental difficulty with ecological inference is that
many different possible relationships at an individual level are
capable of generating the same results at an aggregate level.

No deterministic solution exists for the ecological inference
problem—

individual-level information is irretrievably lost by the process of
aggregation.
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Modifiable Areal Unit Problem

A problem related to ecological correlation is the modifiable
areal unit problem, where differences in spatial units used in the
aggregation can cause wide variation in the resulting
correlations, ranging anywhere from plus to minus one.

Generally, the manifest association between variables depends
on the size of areal units used, with increases as areal unit size
gets larger.

A related “zone” effect concerns the variation in correlation
caused by reaggregating data into different configurations at
the same scale.
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Restriction of Range for Correlations

When a psychological test is used to select personnel based on
the achievement of a certain cut-score, an unusual
circumstance may occur.

The prediction of job performance after selection is typically
much poorer than what one might have expected beforehand.

In one of the more well-known papers in all of Industrial and
Organizational Psychology, Taylor and Russell (1939) offered
an explanation of this phenomenon by noting the existence of a
restriction of range problem:
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in a group selected on the basis of some test, the correlation
between test and performance must be lower than it would be
in an unselected group.

Based on the assumption of bivariate normality between job
performance and the selection test, Taylor and Russell provided
tables and charts for estimating what the correlation would be
in an unselected population from the value seen between test
and performance in the selected population.
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Odd Correlations

A recent article (Vul et al. 2009) in Perspectives on
Psychological Science, has the intriguing title, “Puzzlingly High
Correlations in fMRI Studies of Emotion, Personality, and
Social Cognition” (renamed from the earlier and more
controversial “Voodoo Correlations in Social Neuroscience”).

These authors comment on the extremely high (for example,
greater than .80) correlations reported in the literature between
brain activation and personality measures, and point out the
fallaciousness of how they were obtained.

Typically, huge numbers of separate correlations were
calculated, and only the mean of those correlations exceeding
some threshold (based on a very small significance level) are
reported.
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It is tautological that these correlations selected for size must
then be large in their average value.

With no cross-validation attempted to see the shrinkage
expected in these measures on new samples, we have sophistry
at best.

Any of the usual understanding of yardsticks provided by the
correlation or its square, the proportion of shared variance, are
inappropriate.

In fact, as noted by Vul et al. (2009), these inflated mean
correlations typically exceed the upper bounds provided by the
correction for attenuation based on what the reliabilities should
be for the measures being correlated.
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Measures of Nonlinear Association

An overall concern with the use of the simple correlation
coefficient is that it measures linearity only, and then through a
rather indirect measure of shared variance defined by the
coefficient of determination, the squared correlation.

Specifically, there is no obvious operational measure of strength
of relation defined in terms of the given sample at hand, which
in turn could be given a transparent probabilistic meaning with
respect to the latter.

One century-old suggestion is to use the Spearman correlation,
which is equivalent to the Pearson correlation computed on
ranks.

Although it is true that a perfect monotonic relation between
two variables turns into one that is perfectly linear when ranks
are used, the strength of such an association measure is now a
somewhat unsatisfying shared variance between ranks.
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Goodman-Kruskal Gamma Coefficient

An alternative notion of rank correlation is based on the
number of inversions in rank ordering for the two variables, X
and Y , taken over all object pairs.

Suppose (xi , yi ) and (xj , yj) are the observed measures for two
objects, i and j . If xi > xj but yi < yj , we have an “inversion”;
when xi > xj and yi > yj , a “noninversion” exists.

A simple measure of rank-order association is the
Goodman–Kruskal (G-K) γ (gamma) coefficient obtained over
the N(N − 1)/2 object pairs:

the ratio of the number of noninversions (S+) minus the
number of inversions (S−), all divided by the sum of S+ and
S− .
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The G-K γ coefficient is bounded between plus and minus 1.0,
and can be given a convenient and transparent probabilistic
meaning with respect to the given sample:

if we choose two objects at random, and consider the ordering
provided by untied values on X and Y , γ is the probability of a
noninversion minus the probability of an inversion.
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Goodman-Kruskal Lambda Coefficient

The G-K γ measure is appropriate only for a contingency table
in which the two cross-classification attributes consist of
ordered categories.

A more general measure that relates two arbitrary attributes
considered to be nominal where both have assumed unordered
categories, was also proposed by Goodman and Kruskal and
labeled by the Greek letter lambda, λ (the Goodman–Kruskal
(G-K) Index of Predictive Association).

We define it in terms of an R × C contingency table having the
following form:



Correlation

Psychology
(Statistics)

484

A1 A2 · · · AC Row Sums

B1 N11 N12 · · · N1C N1·
B2 N21 N22 · · · N2C N2·
...

...
...

...
...

BR NR1 NR2 · · · NRC NR·
Column Sums N·1 N·2 · · · N·C N·· ≡ N
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Suppose a process is initiated where an object is picked from
the table and the row event that occurs is noted (that is,
B1, . . . ,BR).

Then based on this knowledge of the row event, say Br , we
guess the column event by choosing that column with the
highest frequency within row Br .

An error of prediction is made with probability

Nr · −max1≤c≤C Nrc

Nr ·
,

and using the rule of total probability, the overall error of
prediction is

R∑
r=1

(
Nr · −max1≤c≤C Nrc

Nr ·

)(
Nr ·
N··

)
= 1−

∑R
r=1 max1≤c≤C Nrc

N··
,
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and denoted by Perror |row = probability of an error in predicting
the column category given knowledge of the row category.

If an object is picked from the table and we are asked to make
a best prediction of column category without any further
information, the column category with the largest frequency
would be used.

An error in prediction is made with probability

N·· −max1≤c≤C N·c
N··

= 1− max1≤c≤C N·c
N··

,

denoted by Perror = probability of an error in predicting the
column category.
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These two probabilities can be used to form a proportional
reduction in error measure, λA|B (predicting a column category
(A1, . . . ,AC ) from a row category (B1, . . . ,BR)):

λA|B =
Perror − Perror |row

Perror
=

(
∑R

r=1 max1≤c≤C Nrc) − max1≤c≤C N·c
N·· −max1≤c≤C N·c

.



Correlation

Psychology
(Statistics)

484

If λA|B is zero, then the maximum of the column marginal
frequencies, max1≤c≤C N·c , is the same as the sum of the
maximum column frequencies within rows.

In other words, no differential predictions of a column event are
made based on knowledge of what row an observation belongs
to.

The G-K λ measure is asymmetric, and λA|B is not necessarily
the same as λB|A; for example, one measure could be zero and
the other positive.
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λB|A and the usual chi-square association statistic.

The latter is a nontransparent measure of relationship in a
contingency table with unordered attributes that increases
proportionately with increasing sample size;

a λ measure has the transparent interpretation in terms of the
differential predicability of one attribute from another.

Given that only nominal attributes are required, it is universally
appropriate for just about any task of relating two variables,
irrespective of the levels of measurement they might have.
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Intraclass Correlation

A different type of correlational measure, an intraclass
correlation coefficient (ICC), can be used when quantitative
measurements are made on units organized into groups,
typically of the same size.

It measures how strongly units from the same group resemble
each other.

Here, we will emphasize only the case where group sizes are all
2, possibly representing data on a set of N twins, or two raters
assessing the same N objects.

The basic idea generalizes, however, to an arbitrary number of
units within each group.
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contemporaries conceptualized the problem as follows:

let (xi , x
′
i ), 1 ≤ i ≤ N, denote the N pairs of observations

(thus, we have N groups with two measurements in each).

The usual correlation coefficient cannot be computed, however,
because the order of the measurements within a pair is
unknown (and arbitrary).

As an alternative, we first double the number of pairs to 2N by
including both (xi , x

′
i ) and (x

′
i , xi ). The Pearson correlation is

then computed using the 2N pairs to obtain an ICC.
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Random Effects Model

As a more convenient and generalizable version of the ICC
computations, we adopt the Model II (random effects)
analysis-of-variance model:

Yij = µ+ αi + εij ,

where Yij is the jth observation in the ith group, µ is the
overall mean, αi is a random variable indicating an effect
shared by all values in group i , and εij is a random variable
representing error.
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within and between themselves with expected values of zero,
and variances of σ2α and σ2ε , respectively.

The population ICC parameter is given by

σ2α
σ2α + σ2ε

,

and estimated by a ratio:

(Mean Square Between − Mean Square Within) divided by
(Mean Square Between + Mean Square Within).
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Heritability Coefficient

In studying heritability, we need two central terms:

Phenotype: the manifest characteristics of an organism that
result from both the environment and heredity; these
characteristics can be anatomical or psychological, and are
generally the result of an interaction between the environment
and heredity.

Genotype: the fundamental hereditary (genetic) makeup of an
organism; as distinguished from (phenotypic) physical
appearance.
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particular phenotype, symbolically we have:

Phenotype(P) = Genotype(G ) + Environment(E ), or in terms
of variances, Var(P) = Var(G ) + Var(E ), assuming that the
covariance between G and E is zero.

The ICC in this case is the heritability coefficient,

H2 =
Var(G )

Var(P)
.
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Heritability estimates are often misinterpreted, even by those
who should know better.

In particular, heritability refers to the proportion of variation
between individuals in a population influenced by genetic
factors.

Thus, because heritability describes the population and not the
specific individuals within it, it can lead to an aggregation
fallacy when one tries to make an individual-level inference
from a heritability estimate.
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of a personality trait is, say, .6, that therefore 60% of a specific
person’s personality is inherited from parents and 40% comes
from the environment.

The term “variation” in the phrase “phenotypic variation” is
important to note.

If a trait has a heritability of .6, it means that of the observed
phenotypic variation, 60% is due to genetic variation.

It does not imply that the trait is 60% caused by genetics in a
given individual.
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Nor does a heritability coefficient imply that any observed
differences between groups (for example, a supposed 15 point
I.Q. test score difference between blacks and whites) is
genetically determined.

As noted explicitly in Stephen Jay Gould’s The Mismeasure of
Man (1996), it is a fallacy to assume that a (high) heritability
coefficient allows the inference that differences observed
between groups must be genetically caused.

As Gould succinctly states: “[V]ariation among individuals
within a group and differences in mean values between groups
are entirely separate phenomena. One item provides no license
for speculation about the other.”

For an in-depth and cogent discussion of the distinction
between heritability and genetic determination, the reader is
referred to Ned Block, “How Heritability Misleads About Race”
(Cognition, 1995, 56, 99–128).


