
Cross-validation:

The one topic that many texts in statistics

(and in regression) ignore and that I believe

to be crucial to our use of these methods, is

cross-validation –

we might discuss this under the rubric of how

does one result found for a given sample of

data hold up in a new sample

Suppose we look at the squared correlation,

R2, as a measure of how good my sample

equation is in the sample I have – here, we

use the squared correlation between Y and Ŷ

Adjusted R2 does something similar but more

as to how the population model does in the

population
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What I am really interested in is how well does
the sample equation work more generally – I
have optimized the sample equation to the par-
ticular data at hand.

In other words, how well does the sample equa-
tion do in a new group – the quintessential
question of “cross-validation”

How to do it:

a) Get new data and use the sample equation
to predict Y and get the squared correlation
between Y and Ŷ

call this R2
new

The difference between R2 and R2
new is called

“shrinkage” and measures the drop in how well
one can predict with new data (this is not
Wherry’s formula, irrespective of what some
may say) ...

The problem: new data are sometimes “hard
to come by”
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b) Split the original sample into two; obtain the

equation on one part (the “training sample”)

and test how well it does on on the second

(the “test” sample)

Smaller sample sizes in the training sample lead

to more unstable equations –

c) Sample Reuse Methods: Suppose I break

up my samples into K parts; I fit my equation

with K − 1 of the parts together and test on

the one part left out. I repeat this process

K times, leaving one of the K parts out each

time. (This is called K-fold cross-validation.)

At the extreme, if I have n subjects, I could do

n-fold cross-validation where I leave one person

out at a time;
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I predict for this person (say, person i), obtain-
ing Ŷi, and then obtain the squared correlation
between the Yi’s and Ŷi’s to see how well I
cross-validate with a “new” sample.

Each equation I calculate is based on n − 1
subjects, so I should have more stability than
in (b) –

Jackknife:

An idea similar to the “hold-out-some(one)-at-
a-time” is Tukey’s Jackknife.

This was devised by Tukey to obtain a confi-
dence interval on a parameter (and indirectly
to reduce the bias of an estimator that is not
already unbiased)

In Psychology, there is an early discussion of
the Jackknife in the Handbook of Social Psy-
chology (Volume II) (Lindzey and Aronson; 1968)
by Mosteller and Tukey: Data Analysis — In-
cluding Statistics
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General approach for the Jackknife:

suppose I have n observations X1, . . . , Xn and

let θ be an unknown parameter of the popula-

tion.

We have a way of estimating θ (by, say, θ̂) –

Group the n observations into t groups of m;

thus, n = tm:

{X1, . . . , Xm}, . . . , {X(t−1)m+1, . . . , Xtm}

Let θ̂−0 be the estimate based on all groups;

Let θ̂−i be the estimate based on all groups

except the ith
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Define new estimates of θ, called “pseudo-

values” as follows:

θ̂∗i = tθ̂−0 − (t− 1)θ̂−i, for i = 1, . . . , t

The Jackknife estimate of θ is the mean of the

pseudo-values:

θ̂∗· =
∑t
i=1

θ̂∗i
t

An estimate of its standard error is

sθ̂∗· = [
∑t
i=1

(θ̂∗i−θ̂∗·)2

t(t−1) ]1/2
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Approximate confidence interval:

θ̂∗· ± sθ̂∗·tα2 ,t−1

We act as if the t pseudo-values θ̂∗1, . . . , θ̂∗t are

independent and identically distributed obser-

vations.

We also reduce some bias in estimation if the

original estimate we used was biased.
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An example:

suppose I want to estimate µ based on X1, . . . , Xn

Choose t = n

θ̂−0 = 1
n

∑n
j=1Xj

θ̂−i = 1
n−1

∑n
j=1,i 6=jXj

θ̂∗i = n(1
n

∑n
j=1Xj)−(n−1)( 1

n−1
∑n
j=1,i 6=jXj) =

Xi

Thus, θ̂∗· = 1
n

∑n
i=1Xi = X̄
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sθ̂∗· =
√

1
n(n−1)

∑n
i=1(Xi − X̄)2 =

√
s2
X/n, where s2

X is an unbiased estimate of σ2

Confidence interval:

X̄ ± (
√
s2
X/n) tα

2 ,t−1
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The Bootstrap:

Population (“Theory World”): the pair of ran-

dom variables X and Y are, say, bivariate nor-

mal

Sample (“Data World”): n pairs of indepen-

dent and identically distributed observations on

(X,Y ):

(X1, Y1), . . . , (Xn, Yn); these could be used to

give rXY as an estimate of ρXY

Now, make Data World the Theory World Pop-

ulation:

(X1, Y1), . . . , (Xn, Yn), and each occurs with prob-

ability 1
n
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Sample this Theory World Population (with

replacement) to get one “bootstrap” sample

(with possible repeats):

(X
′
1, Y

′
1), . . . , (X

′

n
′, Y

′

n
′) (usually, n equals n

′
)

Get B bootstrap samples and compute the cor-

relation for each: r(1)
XY , . . . , r

(B)
XY

This last distribution could be used, for exam-

ple, to obtain a confidence interval on ρXY
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Permutation tests for correlation measures:

We start at the same place as for the Boot-

strap:

Population (“Theory World”): the pair of ran-

dom variables X and Y are, say, bivariate nor-

mal

Sample (“Data World”): n pairs of indepen-

dent and identically distributed observations on

(X,Y ):

(X1, Y1), . . . , (Xn, Yn); these could be used to

give rXY as an estimate of ρXY

Now, to test Ho : X and Y are statistically

independent.
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Under Ho, the X’s and Y ’s are matched at ran-

dom; so, assuming (without loss of generality)

that we fix the X’s, all n! permutations of the

Y ’s against the X’s are equally likely to occur.

We can calculate a correlation for each of these

n! permutations and graph:

the distribution is symmetric and unimodal at

zero; the range along the horizontal axis obvi-

ously goes from −1 to +1

p−value (one-tailed) = number of correlations

as or larger than the observed correlation/n!

Also, as an approximation, rXY ∼ N(0, 1
n−1);

Thus, the standard error is close to 1√
n

; this

might be useful for quick “back-of-the-envelope”

calculations
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