
Indicator Variables (or, dummy variables; these

typically code for group membership)

We begin with a distinction between quantita-

tive and qualitative variables:

Quantitative – the numbers are assumed to

represent magnitudes of some quantity

Qualitative – the numbers are assumed to be

labels, i.e., the categorical or nominal level of

measurement

The question: how can we incorporate cate-

gorical variables into multiple regression

Suppose I have a categorical variable X that I

would like to use in explaining some quantita-

tive variable Y :
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Yi = β0 + β1Xi + εi, where Xi = 1 when i is

from class 1; and Xi = 0 when i is from class

2

X is the dummy variable indicating group (class)

membership

Thus, if Xi = 1, then Yi = β0 + β1 + εi;

if Xi = 0, then Yi = β0 + εi

We can carry out the least-squares fit and get

b0 and b1

Now, what do you think these estimates turn

out to be?
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b0 is the mean of the Y ’s (i.e., Ȳ2) when X = 0)

b0 + b1 is the mean of the Y ’s (i.e., Ȳ1) when

X = 1)

So, b0 = Ȳ2 and b1 = Ȳ1 − Ȳ2

Now, E(b1) = E(Ȳ1 − Ȳ2) = µ1 − µ2 = β1,

where µ1 and µ2 are the means in groups 1

and 2, respectively

Thus, a test of Ho : β1 = 0 is the same as as

a test of Ho : µ1 = µ2

Do we have a procedure?
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Remember the t-test for two independent sam-

ples:

Ȳ1 − Ȳ2√
σ̂2(n1+n2

n1n2
)
∼ tn1+n2−2

where σ̂2 is the pooled error for two groups.

The test ratio for Ho : β1 = 0 has the form

b1√
s2(b1)

∼ tn−2

where n = n1 + n2 and

s2(b1) = MSE∑
(Xi−X̄)2 = MSE(n1+n2

n1n2
)
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Now, suppose I have 3 groups:

Let Xi1 = 1 if i is in group 1; let Xi2 = 1 if i

is in group 2

Then for the model Yi = β0+β1Xi1+β2Xi2+εi,

we have the following chart:

Group 1 Group 2 Group 3
Xi1 = 1, Xi2 = 0 Xi1 = 0, Xi2 = 1 Xi1 = 0, Xi2 = 0

Yi = β0 + β1 + εi β0 + β2 + εi β0 + εi
Ŷi = b0 + b1 b0 + b2 b0

Thus, b0 = Ȳ3; b1 = Ȳ1 − Ȳ3; b2 = Ȳ2 − Ȳ3

and

β0 = µ3; β1 = µ1 − µ3; β2 = µ2 − µ3
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So, Ho : β1 = 0, β2 = 0 can be tested in the

usual way with

MSR
MSE ∼ F2,n−3; here p−1 = 2 and is the number

of groups minus one; n − p = n − 3 and is n

minus the number of groups.

This is the same as a one-way analysis-of-variance

with 3 groups since Ho : β1 = 0, β2 = 0 implies

Ho : µ1 − µ2 = 0, µ2 − µ3 = 0, and in turn,

Ho : µ1 = µ2 = µ3

This can be extended to any number of groups.
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Suppose I have two factors (factor 1 and factor

2); factor 1 has two levels of a and b (e.g.,

male and female); factor 2 has two levels of c

and d (two difficulties of a test)

let Xi1 = 1 if i is in the a level on factor 1 and

0 otherwise;

let Xi2 = 1 if i is in the c level on factor 2 and

0 otherwise;

thus, Xi1Xi2(≡ Xi3) = 1 is i is in the a level

on factor 1 and the c level on factor 2

Consider the model:

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi
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The following table gives E(Yi) under various
combinations of the two factors:

Factor 1 Factor 2 E(Yi)
a c β0 + β1 + β2 + β3
a d β0 + β1
b c β0 + β2
b d β0

Ho : β1 = 0 is the main effect test for Factor 1

Ho : β2 = 0 is the main effect test for Factor 2

Ho : β3 = 0 is the test for interaction between
Factors 1 and 2

This can all be extended to more than two lev-
els on each factor, and to more than 2 factors
– also, a quantitative variable could be incor-
porated as well

If the cell sizes are equal, the independent dummy
variables are uncorrelated and the design is said
to be “orthogonal”
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Now, suppose I have one quantitative indepen-

dent variable, X1, and a dummy variable X2,

where Xi2 = 1 if i is in class 1 and equal to 0

if in class 2

Model: Yi = β0 + β1Xi1 + β2Xi2 + εi

So, for group 1: Yi = β0 + β1Xi1 + β2 + εi =

Yi = (β0 + β2) + β1Xi1 + εi

for group 2: Yi = β0 + β1Xi1 + εi

Assuming the slopes within groups are the same,

a test of Ho : β2 = 0 is an attempt to test

whether the intercepts are also the same.
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Or, is there a group difference if I include vari-

able X1

The is called “analysis-of-covariance”; it can

extended to more than two groups by test-

ing the regression coefficients that are on the

dummy variables as a group.

What if the slopes within groups are not the

same:

Yi = β0 + β1(Xi1Xi2) + β2Xi1 + β3Xi2 + εi

For group 1:

Yi = (β0 + β3) + (β1 + β2)Xi1 + εi

For group 2:

Yi = β0 + β2Xi1 + εi
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Thus, to test the hypothesis of “same slopes”,

test Ho : β1 = 0

To test the hypothesis of “same intercepts”,

test Ho : β3 = 0

to test the hypothesis of “same regressions”,

test Ho : β1 = 0, β3 = 0
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What to do when the dependent variable is
binary –

First, the usual assumptions “go to hell”: Y

can’t be normal but must be, say, Bernoulli;
also, the variance of Y will depend on X

We could approach this with Logistic Regres-
sion or through the use of weighted least-squares;

there is another way to view this that we will
follow — through the use of Fisher’s Linear
Discriminant analysis

This is developed in great detail in any Mul-
tivariate Analysis course; it is also the corner-
stone of some statistical approaches to “Big
Data”

We begin by assuming that Y is binary and
defines two groups: Y is 0 if the observation
is in Group I; Y is 1 if the observations is in
Group II
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Suppose I get Ŷ = b0+b1Xi1+· · ·+bp−1Xi(p−1)

If I put in the means on the independent vari-

ables for group I and II, I get ˆ̄Y I and ˆ̄Y II (as-

sume without loss of generality that ˆ̄Y I ≤ ˆ̄Y II,

or we could interchange the group designa-

tions)

I will view the independent variables as ran-

dom; I’m interested in classifying a new obser-

vation into I or II as follows:

Obtain Ŷnew and classify into II if Ŷnew is greater

than C (yet to be found) and into I if Ŷnew is

less than or equal to C
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If the a priori probabilities of group member-

ship are equal, then C = (ˆ̄Y I + ˆ̄Y II)/2 gives

the minimum for the probability of misclassifi-

cation

This assumes multivariate normality and the

population.

To evaluate the actual rule, we can look at the

misclassification table:

Group Membership
I II

Decision I a b
II c d

where n = a+ b+ c+ d
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a+d
n is the percentage of correct classifications

We can also get a similar table using a sample

reuse method since a+d
n is inflated (i.e., we

need cross-validation)

This is called Fisher’s Linear Discriminant Func-

tion

It has the property of maximizing the t2 value

over all linear combinations of the independent

variables
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