
Multiple Regression:

The example we use: predict the number of

accidents (Y ) from the number of licensed ve-

hicles (X1) and the number of police (X2)

comm vehicles (X1) police (X2) accidents (Y )
(1000s) (100s)

1 4 20 1
2 10 6 4
3 15 2 5
4 12 8 4
5 8 9 3
6 16 8 4
7 5 12 2
8 7 15 1
9 9 10 4

10 10 10 2
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Plotting our data in a three-dimensional space

where the x, y, and z axes correspond to X1,

X2, and Y , respectively,

the least-squares task is to look for a best-

fitting plane of the form

Ŷ = b0 + b1X1 + b2X2.

The sum of the squared lengths of the vertical

projections to the plane is to be minimized.

Some computational formulas:

SSTO =
∑

(Yi − Ȳ )2 =
∑
Y 2
i − nȲ

2 =

Y
′
Y − 1

nY
′
11
′
Y = (where 1 is a column vector

of one’s)

Y
′
[I − 1

nJ]Y (where J is a matrix of one’s)
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SSE =
∑
e2
i =

∑
(Yi − Ŷi)2 =

(Y −Xb)′(Y −Xb) = Y
′
Y − b′X ′Y =

Y
′
[I −X ′(X ′X)−1X

′
]Y = Y

′
[I −H]Y

SSR = b
′
X
′
Y − 1

nY
′
11
′
Y =

Y
′
[X
′
(X
′
X)−1X

′ − 1
nJ]Y = Y

′
[H − 1

nJ]Y
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A “quadratic form” has the form (pun intended):

Y
′
AY =

n∑
j=1

n∑
i=1

aijYiYj

where A is a symmetric matrix.

Note that Y
′
[I − 1

nJ]Y , Y
′
[I −H]Y , and

Y
′
[H − 1

nJ]Y are all quadratic forms, implying

that all of the various sums of squares can be

put into this framework.

Thus, distributional results obtained for quadratic

forms generally can be applied directly to our

sums of squares.
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The covariance between two linear combina-

tion:

Suppose I have n random variables, X1, . . . , Xn,

and two linear combinations:

ai1X1 + ai2X2 + · · ·+ ainXn and

aj1X1 + aj2X2 + · · ·+ ajnXn

The covariance between these two linear com-

binations is

ai1aj1V (X1) + · · ·+ ainajnV (Xn)+

2ai1aj2Cov(X1, X2)+· · ·+2ai1ajnCov(X1, Xn)+

2ai2aj3Cov(X2, X3) + · · ·+ 2ai2ajnCov(X2, Xn)

+ · · ·+ 2ai(n−1)ajnCov(Xn−1, Xn)
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Let a
′
i = [ai1 ai2 · · · ain],

a
′
j = [aj1 aj2 · · · ajn], and

X =

 X1
...
Xn



σ2(X) =

 V (X1) · · · Cov(X1, Xn)
... ...

Cov(Xn, X1) · · · V (Xn)



Cov(a
′
iX,a

′
jX) =

a
′
i[σ

2(X)]aj
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E(a
′
iX) = a

′
iE(X) = ai1E(X1)+· · ·+ainE(Xn)

E(a
′
jX) = a

′
jE(X) = aj1E(X1)+· · ·+ajnE(Xn)

Let

Ar×n =


a
′
1
a
′
2...

a
′
r



AX =


a
′
1X

a
′
2X...

a
′
rX



1) E(AX) = AE(X)

2) σ2(AX) = Aσ2(X)A
′
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Inferences in Regression – Matrix Re-expression:

b =

[
b0
b1

]
=

(X
′
X)−1X

′
Y = A2×nYn×1

σ2{b} = Aσ2{Y }A′ = Aσ2IA
′

=

σ2(X
′
X)−1 = σ2


∑
X2

n
∑

(Xi−X̄)2
−X̄∑

(Xi−X̄)2

−X̄∑
(Xi−X̄)2

1∑
(Xi−X̄)2



Notation:

s2{b} = MSE(X
′
X)−1
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One application:

Let Ŷh = b0 + b1Xh =

[1 Xh]

[
b0
b1

]
=

V ar(Ŷh) = [1 Xh]σ2(X
′
X)−1

[
1
Xh

]
=

σ2[1
n + (Xh−X̄)2∑

(Xi−X̄)2]
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Multiple Regression Model:

Yi = β0 + β1Xi1 + · · ·+ βp−1Xi(p−1) + εi

where εi ∼ N(0, σ2) and all εi are independent.

Again, have n observations –

Yn×1 =

 Y1
...
Yn

 ;βp×1 =

 β0
...

βp−1

 ; εn×1 =

 ε1
...
εn

 ;

Xn×p =

 1 X11 · · ·X1(p−1)
... ...
1 Xn1 · · ·Xn(p−1)

 ;
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Y = Xβ + ε, where

E(ε) = 0

σ2{ε} = σ2I

I just need to translate my results for the case

of one dependent and one independent vari-

ables:

Least-squares estimates:

b = (X
′
X)−1X

′
Y =

 b0
...

bp−1



Unbiasedness: E(b) = β

Residuals: e = Y −Xb = Y − Ŷ

Fitted values: Ŷ = Xb
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SSTO =
∑

(Yi − Ȳ )2

SSE =
∑
e2
i = Y

′
Y − b′X ′Y

SSR is by subtraction

σ2{b} = σ2(X
′
X)−1

s2{b} = MSE(X
′
X)−1

Source df SS MS F
Regression p− 1 SSR MSR MSR/MSE

Error n− p SSE MSE ∼ Fp−1,n−p
Total n− 1 SSTO

I could also do Error = SSPE + SSLF, but I

need sets of identical observations on the vari-

ables and these are usually hard to get.

The test is for Ho : β1 = · · · = βp−1 = 0 simul-

taneously.
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In MSE there are n − p degrees of freedom;

you lose p because you estimate p parameters,

β0, . . . , βp−1

Coefficient of multiple determination: R2 =

1− SSE
SSTO;

the (positive) square root is the coefficient of

multiple correlation.

This is the correlation between Yi and Ŷi over

all i from 1 to n

Among all linear combinations this correlation

is the maximum possible.
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Adjusted R2:

Even though we define R2 = 1− SSE
SSTO,

the expectation is not exactly zero when Ho :

β1 = · · · = βp−1 = 0 is true.

i.e., E( SSE
SSTO) = n−p

n−1, which implies E(R2) =

1− n−p
n−1 = p−1

n−1

So, the suggested correction called adjusted

R2:

R2
adjusted = 1− (

n− 1

n− p
)(

SSE

SSTO
),

which has expectation of zero when Ho is true.

14



This is an attempt to get closer to an unbiased

estimate in the correlational model we will talk

about later.

Called Wherry’s “shrinkage” formula inappro-

priately (“shrinkage” refers to cross-validation,

which is not what this is).

Note:

R2
a = R2−E(R2)

1−E(R2)
=

1− (n−1
n−p)( SSE

SSTO)
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In simple linear regression, we had confidence

intervals for each of the regression coefficients,

for the mean value of Y at a particular level of

X, and a prediction interval for a new obser-

vation.

We have all of these in the multiple regression

context as well.

a) For βk:

(bk − βk)/s(bk) ∼ tn−p

where s(bk) is the square root of the appropri-

ate diagonal entry in s2{b} = MSE(X
′
X)−1

b) For Ŷh = b0 + b1Xh1 + · · ·+ bp−1Xh(p−1),

V ar(Ŷh) = X
′
h[σ

2(X
′
X)−1]Xh, where
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Xh =


1
Xh1

...
Xh(p−1)



Thus,

Ŷh − (b0 + b1Xh1 + · · ·+ bp−1Xh(p−1))√
MSE(X

′
h[(X

′
X)−1]Xh)

∼ tn−p

c) For a new observation, Yh:

(Yh − Ŷh)√
MSE(1 +X

′
h[(X

′
X)−1]Xh)

∼ tn−p
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Regression coefficients:

Yi = β0 + β1Xi1 + · · ·+ βp−1Xi(p−1) + εi

The betas are sometime called “partial regres-

sion coefficients”. Other things being held

constant (ceteris paribus), one unit change in

Xik results in a βk change in Yi

This is not, however, a means of arguing for

the importance of a particular variable in pre-

dicting Y (because all of the independent vari-

ables are intercorrelated among themselves).

Note:

Yi
σY

= β0
σY

+ β1
σX1
σY

(Xi1σX1
) + · · ·+

βp−1
σXp−1
σY

(
Xi(p−1)
σXp−1

) + εi
σY
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βk
σXk
σY

are “standardized regression coefficients”

(because all the variables now have unit vari-

ance.

bk
SXk
SY

are called (confusingly) “beta” coeffi-

cients.

This does get rid of the scale problem but not

the problem of interpreting importance in the

framework of a correlated system of indepen-

dent variables –

this lingers on like a curse for anyone using

multiple regression in a data analytic context.
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Inference in Multiple Regression:

The “Extra Sum of Squares Principle” (Model

Comparisons)

This is a very general strategy for testing hy-

potheses about regression coefficients.

In the general model:

Y = Xβ + ε, where

β =


β0
β1
...

βp−1



we know how to test:
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a) Ho : β1 = · · · = βp−1 = 0, with

MSR
MSE ∼ Fp−1,n−p

b) Ho : βk = 0, with

[ bk
s(bk)]2 ∼ [tn−p]2 ∼ F1,n−p

Thus we know how to test “one” or “all”

Now I want a strategy for

Ho : βq = βq+1 = · · · = βp−1 = 0, i.e., we set
p− q of the betas equal to zero.

In general, because we can label and order the
variables as we wish, this is a way of testing
any p− q coefficients against zero.

If q = p− 1, we get Ho : βp−1 = 0

If q = 1, we get Ho : β1 = · · · = βp−1 = 0
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Now, suppose we fit the Full Model:

Yi = β0 + β1Xi1 + · · ·+ βp−1Xi(p−1) + εi

and get: SSTO = SSE(F ) + SSR(F ), where

“F” stands for “Full”

Now, consider the reduced model:

Yi = β0 + β1Xi1 + · · ·+ βq−1Xi(q−1) + εi

Fitting this, we get

SSTO = SSE(R)+SSR(R), where “R” stands

for “Reduced”

Consider the “Extra Sum of Squares” defined

by SSE(R) − SSE(F ). First, what is the sign

of the extra sum of squares? (does SSE(R)

need to be bigger than SSE(F)?)
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If Ho : βq = βq+1 = · · · = βp−1 = 0 is true,

what do you expect SSE(R) − SSE(F ) to re-

flect? (answer: just error)

Degrees of Freedom:

SSE(F )→ n− p;

SSE(R)→ n− q

Thus, SSE(R)− SSE(F )→ p− q

So, I could form

SSE(R)−SSE(F )
p−q

which estimates σ2 unbiasedly under Ho : βq =

βq+1 = · · · = βp−1 = 0

If Ho is not true, it will be expected to be larger

than σ2
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I need a denominator that always estimates σ2

unbiasedly

Assuming the Full Model is the “true” one

SSE(F )
n−p is it –

Thus, under Ho : βq = βq+1 = · · · = βp−1 = 0,

[SSE(R)−SSE(F )]/(p−q)
SSE(F )/(n−p) ∼ Fp−q,n−p

If q = p− 1, we get Ho : βp−1 = 0 and F1,n−p

If q = 1, we get Ho : β1 = · · · = βp−1 = 0 and

Fp−1,n−p
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We call the term, SSE(R)−SSE(F ), the “extra
sum of squares”; it is the amount added to
SSR if the additional variables need to reach
the Full model are added to the Reduced model

Denoted as

SSR(Xq, Xq+1, . . . , Xp−1|X1, . . . , Xq−1)

We could build this up sequentially:

SSR(X1, . . . , Xp−1) = SSR(X1)+SSR(X2|X1)+
· · ·+ SSR(Xp−1|X1, . . . , Xp−2)

The procedure of fitting Full and Reduced mod-
els is very general. Suppose, the null hypothe-
sis is

Ho : βi = βj

Then SSE(F ) has n − p degrees of freedom;
SSE(R) has n− (p− 1) degrees of freedom;

Thus, [SSE(R)−SSE(F )]/1
SSE(F )/(n−p) ∼ F1,n−p
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Nonlinear models fit by multiple linear regres-
sion:

a) Yi = β0 + β1Xi1 + β2Xi2 + εi,

where Xi2 = X2
i1 gives a curve when plotting

the fitted values in the X1 by Y space (this is
polynomial regression).

b) Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + εi

includes the “interaction” of X1 and X2;

rewriting:

Yi = β0 + β1Xi1 + (β2 + β3Xi1)Xi2 + εi

Thus, the regression coefficient on X2 changes
depending on the level of X1

(or we could rephrase as the regression coef-
ficient on X1 changing depending on the level
of X2)
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We refer to the model as “nonadditive” when

an interaction product term is included.

c) Yi = β0X
β1
i →

log(Yi) = log(β0) + β1 log(Xi)→

Y
′
i = β

′
0 + β1X

′
i
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