
Experimental Design:

Much of the material we will be covering for a
while has to do with designing an experimen-
tal study that concerns some phenomenon of
interest.

We wish to use our subjects in the best way
possible.

Our emphasis is on random assignment strate-
gies, particularly as to blocking/not blocking
on certain factors to make the assessment of
some set of treatments more precise.

This is in contrast to observational studies,
where random assignment is not possible.

We have touched already on many of the anal-
ysis methods we will now explore in greater
depth (e.g., what comes from multiple regres-
sion and the general linear model)
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The general argument for randomization is that

it will tend to average out between the treat-

ments whatever systematic effects may be present,

apparent or hidden, so that comparisons be-

tween treatments measure only the pure treat-

ment effects.

We try to eliminate extraneous factors not un-

der the experimenter’s control.

In a “completely randomized design”, treat-

ments are assigned to subjects at random; the

analysis methods will be the various ANOVA

models we have and will discuss.

If the subjects are heterogeneous, we may wish

to block on various factors and randomize within

blocks to treatments.

The latter is a form of “restricted randomiza-

tion”
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As emphasized by R. A. Fisher in the first half

of the twentieth century, the physical act of

randomization can be used to justify the anal-

ysis methods we have and will discuss.

For example, consider the completely random-

ized design:

Treatment
1 2 · · · r
Y11 Y21 · · · Yr1
Y12 Y22 · · · Yr2

... ...
Y1n1

Y2n2
· · · Yrnr

Under the usual null hypothesis that all the

means are equal, we compare

MSTR
MSE to Fr−1,nT−r,

where nT = n1 + · · ·+nr, the total sample size.

3



If the treatments do not influence the scores,

then the observations we see would be the

same before or after the imposition of the treat-

ments.

Consider the pool of nT observations:

Under the (null) hypothesis of no treatment

influence, what you see is a random allocation

of the nT observations to the r groups.

Is this a reasonable conjecture?

Suppose I evaluate MSTR
MSE for my observed data,

and evaluate it against all possible ( nT !
n1!...nr!

)

ways the data could be subdivided.

If my observed statistic is extreme with respect

to this distribution, reject the null hypothesis
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As Fisher and others have argued, Fr−1,nT−r
is a good approximation to this distribution
(with no assumption of normality or random
sampling)

Besides relying on an approximation, we could
carry out “complete enumeration” or some sam-
pling of the complete distribution.

Also, once we get into this, we can consider:

1) equivalent statistics

2) other measures or test statistics

3) use of ranks instead of the original obser-
vations (e.g., the Kruskal-Wallis analysis-of-
variance by ranks)

Also, if the ranks are untied, one might be able
to do complete enumeration in table form

Note that the two-independent sample instance
is a special case (when r = 2)
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Or, suppose we have a b dependent-sample

problem:

Treatments
1 2 · · · b

1
2

Blocks ...
a

The usual test as we will see under Model III

ANOVA if to compare MSTR
MSAB to Fb−1,(a−1)(b−1)

If we allocate b within blocks at random, there

are (b!)a equally-likely ways the data could have

arisen if there are no treatment effects.

If we use ranks (within blocks), we have Fried-

man’s Test

This specializes to 2 treatments (the paired

t-test situation)
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Single-factor or One-way Analysis of Variance

(ANOVA)

The usual form of the independent sample t-

test involved only two groups.

The one-way ANOVA extends the same com-

parison ideas beyond two groups.

We present one-way ANOVA in a very classical

way first; then we relate it to the regression

approach

Example: Suppose I have three toothpastes to

compare – Colgate, Aim, and Crest

[Goggle: Look Ma, no cavities]

Due to conflicting claims, you decide to test if

these all have the same decay prevention power
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Some distinctions:

Model I: fixed effects. These are the only three

toothpastes I care about. If I did the study

again, I would use these same toothpastes.

Model II: random effects. I choose at ran-

dom three toothpastes from the population of

pastes and would like to generalize my results

to the whole population of pastes. If I did the

experiment over again, I would not necessarily

choose these same pastes.

We will talk about fixed effects ANOVA for

now.

Suppose I have a group of people and put them

on pastes for a year. I randomly assign subject

to the pastes and measure the number of cav-

ities after one year.
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Terms:

Factor – the independent variable studied. In
this case it is “paste”

Level of a factor – 3 levels here

Single factor (one-way) – only one factor is
under study and that is of paste

Experimental (manipulated) factor – under the
control of the experimenter

Classification (status) factor – not under the
control of the experimenter

Qualitative factor – levels are not ordered

Quantitative factor – levels are ordered in some
way

ANOVA considers the factors to be qualitative
even though they may not be
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Notation:

Theoretical means Sample sizes
Group 1 (Colgate) µ1 n1

Group 2 (Aim) µ2 n2
Group 3 (Crest) µ3 n3

Thus, µ1 is the theoretical mean of cavities for

all people I could have observed under group

1, and so on.

In general, we have r groups with means µ1, . . . , µr

and sample sizes of n1, . . . , nr; the total sample

size nT is equal to
∑r
i=1 ni
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We let Yij be the response of subject j in group

i, so 1 ≤ i ≤ r and 1 ≤ j ≤ ni

Model: (The full-rank linear model)

Yij = µi + εij, where εij ∼ N(0, σ2) and inde-

pendent (also, constant variance), and µi is

fixed

Thus, Yij ∼ N(µi, σ
2), and all are independent

My task (if I should decide to take it), is to

develop a procedure for testing

Ho : µ1 = · · · = µr
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Some Notation:

In estimating the model we will use the sample
mean in group i:

µ̂i =
1

ni

ni∑
j=1

Yij =
1

ni
(Yi·) = Ȳi·

Grand mean:

1

nT

r∑
i=1

ni∑
j=1

Yij =
1

nT
Y·· = Ȳ··

Partition of the Total Sum of Squares:

Ideally all people in one group would have the
same number of cavities. We would not have
any variability within groups.

The only differences would be dependent on
what particular group a person is placed into,
i.e., we would have variation between groups

Unfortunately, it is never that easy.
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Consequently, I would like to have some mech-

anism of comparing the variation between groups

to that within groups and if between groups

variation is “large”, then I would feel justified

in rejecting Ho : µ1 = · · · = µr

So, look at the Sum of Squares Total (SSTO):

r∑
i=1

ni∑
j=1

(Yij − Ȳ··)2

and rewrite as

r∑
i=1

ni∑
j=1

(Yij − Ȳi·+ Ȳi· − Ȳ··)2

This expands:
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r∑
i=1

ni∑
j=1

(Yij − Ȳi·)2+

r∑
i=1

ni∑
j=1

(Ȳi· − Ȳ··)2+

r∑
i=1

ni∑
j=1

2(Yij − Ȳi·)(Ȳi· − Ȳ··)

The “middle term” (i.e., the one directly above)
is zero, giving the final reduction as

r∑
i=1

ni∑
j=1

(Yij − Ȳi·)2+

r∑
i=1

ni(Ȳi· − Ȳ··)2
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This final reduction is the Sum of Squares

Treatment (SSTR) and Sum of Squares Er-

ror (SSE)

The degrees of freedom also partitions:

nT − 1 for SSTO is =
∑r
i=1(ni − 1) for SSTR

plus r − 1 for SSE: or

nT − 1 = (nT − r) + (r − 1)

We also have Mean Square for Treatment:

MSTR = SSTR
(r−1)

and Mean Square Error: MSE = SSE
(nT−r)
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Can show:

E(MSE) = σ2 (Always)

E(MSTR) = σ2 +
∑r
i=1 ni(µi−µ·)2

r−1

where µ· =
∑r
i=1 niµi
nT

So, again

MSE
σ2 ∼ χ2

nT−r/(nT − r)

MSTR
σ2 ∼ χ2

r−1/(r − 1), when Ho is true that

µ1 = · · · = µr

The two ratios are independent, so

MSTR
MSE ∼ Fr−1,nT−r when Ho is true; otherwise,

it tends to be larger
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Also, MSTR
MSE reduces to a t2 for two groups –

but we cannot do a one-tailed test as we could

using just the t (probably just as well)

The ANOVA Table has the following form:

Source df SS MS F
Between r − 1 SSTR MSTR MSTR/MSE

(Treatments) ∼ Fr−1,nT−r
Within nT − r SSE MSE
(Error)
Total nT − 1 SSTO

Computational Formulas:

SSTO = (
∑r
i=1

∑ni
j=1 Y

2
ij)−

Y 2
··
nT

SSTR = (
∑r
i=1

Y 2
i·
ni

)− Y 2
··
nT

SSE = (
∑r
i=1

∑ni
j=1 Y

2
ij)−

∑r
i=1

Y 2
i·
ni
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The Regression approach to one-way ANOVA:

Y =



Y11
...

Y1n1
Y21

...
Y2n2...
Yr1

...
Yrnr



=



1 0 · · · 0
... ... ...
1 0 · · · 0
0 1 · · · 0
... ... ...
0 1 · · · 0
... ... ...
0 0 · · · 1
... ... ...
0 0 · · · 1




µ1
µ2
...
µr

+



ε11
...

ε1n1
ε21

...
ε2n2...
εr1
...

εrnr



Or, Y = Xβ + ε

The Sum of Squared Error for this Full Model

is denoted by SSE(F); it has nT − r degrees-

of-freedom
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The Reduced Model below has Sum of Squared

Error denoted by SSE(R); it has nT−1 degrees-

of-freedom:

Y =


1
1
...
1

 [µ] +

 ε11
...

εrnr



Thus,

SSE(R)−SSE(F )
(nT−1)−(nT−r)

SSE(F )
(nT−r)

=

SSTR

(r − 1)
/MSE ∼ Fr−1,nT−r
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Alternative formulation (not a full-rank formu-

lation):

Yij = µi + εij is replaced by

Yij = µ·+ τi + εij

Here, τi is the “effect” of being in group i;

µ· is the “beginning level” and it is unclear at

this point how we might define it

In any case, Ho : µ1 = · · · = µr is equivalent to

Ho : τ1 = · · · = τr

Everything else stays the same
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The Regression form of this reformulation:

Y =



Y11
...

Y1n1
Y21

...
Y2n2...
Yr1

...
Yrnr



=



1 1 0 · · · 0
... ... ...
1 1 0 · · · 0
1 0 1 · · · 0
... ... ...
1 0 1 · · · 0
... ... ...
1 0 0 · · · 1
... ... ...
1 0 0 · · · 1




µ·
τ1
...
τr

+



ε11
...

ε1n1
ε21

...
ε2n2...
εr1
...

εrnr



The design matrix X in this case is of size

nT × (r + 1) and is not of full rank; the first

column is the sum of the remaining columns.

Thus, we can’t do the estimation unless we fix

things up
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A possible fix is in defining µ· as a weighted or

unweighted mean; representing τr as a function

of the other taus; and replacing the rows in the

design matrix for the rth group observations by

different values

a) For an unweighted mean: µ· = 1
r

∑r
i=1 µi

and

τi = µi − µ·, which implies
∑r
i=1 τi = 0

Thus if all the taus are equal, the common

value must be zero

Also, we can represent τr as −τ1 − · · · − τr−1
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Here’s the linear model formulation using the

unweighted mean:

Y =



Y11
...

Y1n1
Y21

...
Y2n2...
Yr1

...
Yrnr



=



1 1 0 · · · 0
... ... ...
1 1 0 · · · 0
1 0 1 · · · 0
... ... ...
1 0 1 · · · 0
... ... ...
1 −1 −1 · · · −1
... ... ...
1 −1 −1 · · · −1




µ·
τ1
...

τr−1

+ ε

b) For a weighted mean: µ· =
∑r
i=1( ninT

)µi and

τi = µi − µ·,

∑r
i=1 niτi = 0

Again, if all the taus are equal, this common

value must be zero



Here, τr = −n1
nr
τ1 − · · · −

nr−1
nr

τr−1

For a weighted mean the linear model would

now be formulated as follows:

Y =



Y11
...

Y1n1
Y21

...
Y2n2...
Yr1

...
Yrnr



=



1 1 0 · · · 0
... ... ...
1 1 0 · · · 0
1 0 1 · · · 0
... ... ...
1 0 1 · · · 0
... ... ...
1 −n1

nr
−n2
nr
· · · −nr−1

nr... ... ...
1 −n1

nr
−n2
nr
· · · −nr−1

nr




µ·
τ1
...

τr−1





Power:

If Ho : µ1 = · · · = µr is not true, then MSTR/MSE
has a noncentral F -distribution that depends
on the noncentrality parameter:

φ =
1

σ

√√√√ r∑
i=1

ni(µi − µ·)2

where µ· is the weighted mean.

So, to specify power we must specify σ and
µ1, . . . , µr;

There are a variety of (Pearson-Hartley) charts
we then can consult

We use Feldt and Mahmoud, Power Function
Charts for Specification of Sample Size in Anal-
ysis of Variance (Psychometrika, 1958, pp. 201–
210)
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If we have two groups and equal n’s, the non-

centrality parameter reduces to

(

√
n

2
)(

1

σ
)|µ1 − µ2|,

where

(1
σ)|µ1 − µ2| is Cohen’s effect size

For small, medium, and large effects, Cohen

suggests values of .2, .5, and .8, respectively

So, if you ever need to “appeal to authority”

...
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