
Model II (or random effects) one-way ANOVA:

As noted earlier, if we have a random effects

model, the treatments are chosen from a larger

population of treatments;

we wish to generalize to this larger population.

Thus, experimental replications do not need to

have the same treatments administered;

different samples from the population of treat-

ment could be used.

Model II (random effects) analysis-of-variance

model:
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Yij = µ+ ai + εij ,

where Yij is the jth observation in the ith group,

µ is the overall mean, ai is a random variable in-

dicating an effect shared by all values in group

i, and εij is a random variable representing er-

ror.

The two random variables, ai and εij, are as-

sumed uncorrelated within and between them-

selves with expected values of zero, and vari-

ances of σ2
a and σ2

ε , respectively.

Also, we will only deal with equal sample sizes;

each group is assumed to have n observations:

thus, 1 ≤ i ≤ r and 1 ≤ j ≤ n and the total

sample size, nT = nr
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Computationally, the same Sum-of-Squares can

be obtained as in the fixed-effects model, i.e.,

Sum-of-Squares Treatment (SSTR); Sum-of-

Squares Error (SSE); Sum-of-Squares Total

(SSTO)

The null hypothesis of interest is Ho : σ2
a = 0,

i.e., in the population of possible effects, the

variance is zero

We can show the following:

E(MSE) = σ2
ε ; so, MSE is an unbiased esti-

mate of σε (always)

E(MSTR) = nσ2
a + σ2

ε ; so, MSTR is an unbi-

ased estimate of σε when σ2
a = 0
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So, the null hypothesis, Ho : σ2
a = 0, can be

tested as in Model I ANOVA:

MSTR
MSE ∼ Fr−1,r(n−1)

To estimate the variance components, we note

that MSE is always an unbiased estimate of σ2
ε ;

also, for an unbiased estimate of σ2
a , we use

MSTR−MSE
n

Noting that the total variance V ar(Yij) is

σ2
a + σ2

ε ,

we can form the ratio of treatment variance to

total variance:
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σ2
a

σ2
a + σ2

ε
≡ ρI ,

which is called the intraclass correlation coef-

ficient.

In the context of Model II, it is a measure of

treatment effect strength

To estimate ρI, use a ratio:

(Mean Square Treatment − Mean Square Er-

ror) divided by (Mean Square Treatment +

(n− 1) Mean Square Error).

Later on we will show how to put a confidence

interval on ρI
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The Intraclass correlation (ICC) more gener-

ally:

This different type of correlational measure,

an intraclass correlation coefficient (ICC), can

be used when quantitative measurements are

made on units organized into groups, typically

of the same size.

It measures how strongly units from the same

group resemble each other.

Here, we will emphasize only the case where

group sizes are all 2, possibly representing data

on a set of N twins, or two raters assessing the

same N objects.

The basic idea generalizes, however, to an ar-

bitrary number of units within each group.
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Early work on the ICC from R. A. Fisher and

his contemporaries conceptualized the problem

as follows:

let (xi, x
′
i), 1 ≤ i ≤ N , denote the N pairs of

observations (thus, we have N groups with two

measurements in each).

The usual correlation coefficient cannot be com-

puted, however, because the order of the mea-

surements within a pair is unknown (and arbi-

trary).

As an alternative, we first double the number

of pairs to 2N by including both (xi, x
′
i) and

(x
′
i, xi).

The Pearson correlation is then computed us-

ing the 2N pairs to obtain an ICC.
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Heritability and the ICC:

In studying heritability, we need two central

terms:

Phenotype: the manifest characteristics of an

organism that result from both the environ-

ment and heredity; these characteristics can

be anatomical or psychological, and are gen-

erally the result of an interaction between the

environment and heredity.

Genotype: the fundamental hereditary (genetic)

makeup of an organism; as distinguished from

(phenotypic) physical appearance.

Based on the random effects model (Model II)

for describing a particular phenotype, symbol-

ically we have: Phenotype(P ) = Genotype(G)

+ Environment(E),
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or in terms of variances, Var(P ) = Var(G) +

Var(E), assuming that the covariance between

G and E is zero.

The ICC in this case is the heritability coeffi-

cient,

H2 =
Var(G)

Var(P )
.

—————

As an aside we might note that in the context

of Classical Test Theory where an “observed

score” is composed of “true score” plus “er-

ror” and the latter are uncorrelated, the heri-

tability coefficient is the reliability:

the ratio of “true score variance” to “observed

score variance” (Cronbach’s α is a lower-bound,

as you will learn in any test theory class)
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Heritability estimates are often misinterpreted,

even by those who should know better.

In particular, heritability refers to the propor-

tion of variation between individuals in a pop-

ulation influenced by genetic factors.

Thus, because heritability describes the pop-

ulation and not the specific individuals within

it, it can lead to an aggregation fallacy when

one tries to make an individual-level inference

from a heritability estimate.

For example, it is incorrect to say that because

the heritability of a personality trait is, say,

.6, that therefore 60% of a specific person’s

personality is inherited from parents and 40%

comes from the environment.
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The term “variation” in the phrase “pheno-

typic variation” is important to note.

If a trait has a heritability of .6, it means that

of the observed phenotypic variation, 60% is

due to genetic variation.

It does not imply that the trait is 60% caused

by genetics in a given individual.

Nor does a heritability coefficient imply that

any observed differences between groups (for

example, a supposed 15 point I.Q. test score

difference between blacks and whites) is ge-

netically determined.
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As noted explicitly in Stephen Jay Gould’s The

Mismeasure of Man (1996), it is a fallacy to

assume that a (high) heritability coefficient al-

lows the inference that differences observed

between groups must be genetically caused.

As Gould succinctly states:

“[V]ariation among individuals within a group

and differences in mean values between groups

are entirely separate phenomena. One item

provides no license for speculation about the

other” .

For an in-depth and cogent discussion of the

distinction between heritability and genetic de-

termination, the reader is referred to Ned Block,

“How Heritability Misleads About Race” (Cog-

nition, 1995, 56, 99–128).
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Confidence Intervals on ρI:

We do this indirectly: first put a confidence

interval on θ = σ2
a
σ2
ε

and then use the relation that ρI = θ
1+θ to

put the confidence interval on the intraclass

correlation

The following is true all the time (given the

Model II assumptions):

MSTR/(σ2
ε + nσ2

a)

MSE/σ2
ε

∼ Fr−1,r(n−1)

This can be re-expressed:

MSTR

MSE
(

1

1 + nθ
) ∼ Fr−1,r(n−1)
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Find a and b so:

P (a ≤
MSTR

MSE
(

1

1 + nθ
) ≤ b) = .95

Doing some algebra:

Let x = 1
n(MSTR

bMSE − 1)

and

y = 1
n(MSTR

aMSE − 1)

Then, P (x ≤ θ ≤ y) and inverting

P ( x
1+x ≤ ρI ≤

y
y+1) = 1− α
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