
The Five Most Common Randomization Paradigms:

A) Correlation –

The population is a (bivariate) pair of random

variables, (X,Y )

The data are n pairs of observations on the

population, (x1, y1), . . . , (xn, yn)

The null hypothesis is that the random vari-

ables X and Y are statistically independent,

which implies that the x’s can be fixed as is and

all n! orderings of the y’s should be equally-

likely

As an example, for usual numerical data we

could obtain the correlation for each “way”

(or, for an equivalent statistic such as the raw

cross-product,
∑
xiyi, that would give the same

p-value)
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We compare the observed correlation, robs, to

the table to obtain the exact p-value, i.e., the

probability of seeing a result as or more ex-

treme than what was observed if the null hy-

pothesis is true

This is called Pitman’s test if the original data

are used

If ranks are used, the Pearson correlation turns

into the Spearman correlation, and the test is

referred to as “Hotelling-Pabst”

This also justifies the test for “no association”

based on Kendall’s Tau and/or the Goodman-

Kruskal Gamma coefficient (discussed elsewhere)
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Fisher’s Exact Test:

Consider a 2× 2 contingency table for the ob-

served data:

Attribute 2
Present(1) Absent(0)

Attribute 1 Present(1) a b
Absent(0) c d

Again, the data are n pairs of observations on

the population, (x1, y1), . . . , (xn, yn), where the

x’s are 0 or 1, and the y’s are 0 or 1.

Choose as a test statistic, say, the value “a”
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B) Two-dependent samples –

The population is a (bivariate) pair of depen-
dent random variables, (X,Y )

The data are n pairs of observations on the
population, (x1, y1), . . . , (xn, yn)

The null hypothesis is that the random vari-
ables X and Y have the same distribution,
which implies that all 2n interchanges of the
x’s with the y’s are equally-likely

Or if we consider the data to be the differ-
ences, (x1 − y1), . . . , (xn − yn), then all 2n as-
signments of sign to the absolute values, |(x1−
y1)|, . . . , |(xn − yn)|, are equally-likely

Obtain a statistic as the sum and table (or the
sum of scores for the plus signs, say)

This is called Fisher’s test if the original data
are used
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If we use ranks of the absolute values of the

differences, this is called Wilcoxon’s test

The idea of two-dependent sample also justi-

fies the sign test and McNemar’s test for cor-

related proportions

Suppose we let di = |xi−yi| (or some function,

di = f(|xi − yi|)

Let T = sum of di for the plus signs, and we

reject if T is too extreme

Under the null hypothesis:
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E(T ) = 1
2
∑n
i=1 di (= n(n+1)

4 for untied ranks)

V (T ) = 1
4
∑n
i=1 d

2
i (= n(n+1)(2n+1)

24 for untied

ranks)

T−E(T )√
V (T )

∼ N(0,1)

Wilcoxon Test: using ranks of the di

Sign Test: all di = 1; E(T ) = n
2; V (T ) = n

4
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McNemar’s test of correlated proportions:

yi
0 1

xi 0 a b
1 c d

We are interested in whether the proportion of

1’s for the x’s is the same as the proportions

of 1’s for the y’s

xi − yi 6= 0 if xi = 1, yi = 0 or xi = 0, yi = 1
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So, T = c (which is the number of xi = 1, yi =

0)

E(T ) = 1
2
∑n
i=1 di = b+c

2

V (T ) = 1
4
∑n
i=1 d

2
i = b+c

4

c−((b+c)/2)√
(b+c)/4

= c−b√
b+c
∼ N(0,1)

8



The Sign Test (and relatives):

A number of statistical procedures, primarily

nonparametric ones, are based on the Binomial

distribution.

The basic idea is to compare a particular Bi-

nomial distribution that is hypothesized theo-

retically (usually, a fair coin where p = 1/2) to

the number of successes observed empirically.

If the number of successes is too extreme, it

casts doubt on the reasonableness of the hy-

pothesized distribution.

This would be akin to replacing the absolute

values, |(x1 − y1)|, . . . , |(xn − yn)| in the two-

dependent sample context by 1’s; then consid-

ering all 2n assignments of sign to be equally-

likely gets us to the Binomial with p = 1/2.
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C) Two-independent samples –

The population is a pair of independent ran-

dom variables, say X and X ′

The data are n1 observations on X (Group I):

x1, . . . , xn1,

and n−n1 ≡ n2 observations on X ′ (Group II):

xn1+1, . . . , xn

The null hypothesis is that the random vari-

ables X and X ′ have the same distribution,

and implies that the
(
n
n1

)
ways of picking ob-

servations for Groups I and II are equally-likely

Use a statistic such as the mean difference and

table

This is again called Fisher’s test if the original

data are used
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In an experimental context we can justify the
use of the usual two-independent sample t-test
as an approximation to the randomization test
(and for the two-dependent sample t-test as
well)

Suppose we do an experiment with a perfor-
mance measure and a drug/no drug condition
(I and II)

We have n = 50 subjects, and randomly assign
25 to condition I and the remaining to II; the
drugs are imposed (or not) and we now wish
to assess the null hypothesis of “no difference”
versus “some difference”

We choose some statistic, e.g., the difference
between the two means: MI −MII, and if it is
too large or small, reject the null hypothesis

Question: how to decide if MI − MII is too
extreme?
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We could use the t-test but since we haven’t

sampled from any two populations, it is not

clear whether this is justifiable

An alternative is based on randomization:

If the null hypothesis is true, and since the

subjects were randomly assigned to begin with,

the scores seen for Groups I and II should still

look as if we took all the scores and merely

assigned 25 to each group at random.

Given the pool of 50, there are
(

50
25

)
ways of

doing this; for each, get a mean difference and

do a distribution. The p-value is the number

of differences as extreme or more than my ob-

served difference

The t-distribution is a good approximation to

this, and thus is one justification for using the

two-independent sample t-test.
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Internal validity:

Is the difference you see due to the group struc-

ture unambiguously? If so, the experiment is

said to be internally valid

Moreover, a causal implication can be made:

the group structure “caused” the difference we

see

If fact, random assignment is the only way to

guarantee this

Otherwise, we slip into quasi-experimentation,

threats to internal validity, and in general, “Camp-

bell and Stanley”

We also have external (or ecological) validity:

are the treatments similar to what occurs in

the “real world”
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If we let ei be some score given to xi, choose
the test statistic TI = sum of scores in group
I

E(TI) = n1
n

∑n
i=1 ei

V (TI) = n1(n−n1)
n−1 (1

n

∑n
i=1(ei − ē)2)

TI−E(TI)√
V (TI

∼ N(0,1)

Mann-Whitney Test:

Let U = n1n2 + n1(n1+1)
2 −TI (this is the num-

ber of observations in group II greater than in
group I)

U ′ = n1n2 − U (this is the number of observa-
tions in group I greater than in group II)

U + U ′ = n1n2 (and the probability of a ran-
domly drawn observation from group II being
greater than one randomly drawn one from
group I is U

n1n2
)
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Wald-Wolfowitz Runs Test:

In the two-independent sample context, we use
a different test statistic

Arrange all the scores in a row ordered from
smallest to largest, and attach the group des-
ignation (I and II) to each observation

If the two groups were different, we would
expect higher scores in one group and lower
scores in the other. In other words, we would
expect few runs of all I’s or II’s if the groups
were different

If R is the number of runs, we would reject the
null hypothesis if we observe too few runs:

E(R) = 2n1n2
n1+n2

+ 1

V (R) = 2n1n2(2n1n2−n1−n2)
(n1+n2)2(n1+n2−1)

R−E(R)√
V (R)

∼ N(0,1)
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D) K-independent samples –

Extending the notation for two-independent

samples, there are n!
n1!...nK! equally likely ways

the data could be used to form the K groups

Maybe use

H = SSBetween
MSTotal ∼ χ

2
K−1,

an asymptotic result that holds when the null

hypothesis is true that all K random variables

have the same distributions

When ranks are used, we have the Kruskal-

Wallis analysis-of-variance by ranks
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K-dependent samples –

Extending the structure for two-dependent sam-

ple, we have the data laid out as follows:

1 2 · · · K
blocks 1

2
...
n

There are (K!)n equally-likely ways that data

could be rearranged within blocks

Maybe use

SSTreatments
(SSTreatments+SSInteraction)/(n(K−1) ∼ χ

2
K−1

When ranks (within blocks) are used, we have

(Milton) Friedman’s test
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If the data are 0 and 1, we have Cochran’s

Q test (this extends McNemar’s test) – i.e.,

are the proportions of 1’s the same over the K

columns

If we are concerned with the degree to which

the rankings are consistent within blocks, we

can use Kendall’s coefficient of concordance

(discussed later)
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General Randomization Paradigm for all Non-
parametric Methods:

a) Under Ho, what is equally-likely?

b) Choose some statistic, and get its value for
each “way”, and table

c) compare the observed “way” to the table,
and obtain a p-value

Mechanics:

1) Complete enumeration: some times you
don’t have to do it yourself and tables are
available, particularly if you do (untied) ranks
instead of the original data. Also, now (in SY-
STAT, SPSS, etc) we have “exact” tests

2) Sample the distribution: get as close to the
actual approximation as you want; a Monte
Carlo p-value
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3) Approximations by moments: usually this is

the chi-square or the normal (asymptotically)

Remember, equivalent statistics are those that

lead to exactly the same p values
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Extensions to Other Randomization Paradigms:

To single-subject interventions (and designs),

see

Edgington & Onghena, 2007, Chapter 11: “N-

of-1 Designs” (Randomization Tests, 4th edi-

tion)

—————

To compare (in a correlational sense) data ma-

trices such as

Staff
1 2 · · · K

Patients 1
2
...
n
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See: Hubert, Assignment Methods in Combi-

natorial Data Analysis (1987)

——————

To use in fMRI analyses and solving the mul-

tiple comparison problem, see:

T. E. Nichols and A. P. Holmes

Nonparametric Permutation Tests for Func-

tional Neuroimaging: A Primer with Examples

Human Brain Mapping, 2001, 15, 1–25.

Also, see the Matlab toobox SnPM (which goes

with SPM – Statistical Parametric Mapping)
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