
Normal Correlation Models:

Suppose (X,Y ) is bivariate normal; then

Y |X = x ∼

N(µY + ρY X(σYσX
)(x− µX), σ2

Y (1− ρ2
Y X)) =

N((µY − ρY X(σYσX
)µX) + ρY X(σYσX

)x,

σ2
Y (1− ρ2

Y X)) =

N(β0 + β1x, σ
2)

We test Ho : ρY X = 0 (or, Ho : β1 = 0) with
the usual t-tests

We use Fisher’s Z-transformation to get a con-
fidence interval on ρY X

Here, the correlation rY X estimates a param-
eter; otherwise, it really is only a descriptive
statistic
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Now, in the more general case where

(Y,X1, . . . , Xp−1) is multivariate normal:

(Y |X1 = x1, . . . , Xp−1 = xp−1) ∼

N(µY + β1(x1 − µ1) + · · ·+ βp−1(xp−1 − µp−1),

σ2
Y (1− ρ2

Y ·12...(p−1))) =

N(β0 + β1x1 + · · ·+ βp−1xp−1, σ
2)

where β0 = µY − β1µ1 − · · · − βp−1µp−1 and

σ2 = σ2
Y (1− ρ2

Y ·12...(p−1))

The population squared multiple correlation is

ρ2
Y ·12...(p−1)
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We can show several interesting things:

=

 β1
...

βp−1


(p−1)×1

=

 V (X1) · · · Cov(X1, Xp−1)
... ...

Cov(Xp−1, X1) · · · V (Xp−1)


−1

(p−1)×(p−1)

×


...

cov(Xi, Y )
...


(p−1)×1

ρ2
Y ·12...(p−1) = (the population squared multi-

ple correlation coefficient)
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
...

cov(Xi, Y )
...


′

×

 V (X1) · · · Cov(X1, Xp−1)
... ...

Cov(Xp−1, X1) · · · V (Xp−1)


−1

×


...

cov(Xi, Y )
...

 /σ2

This is also the squared correlation between Y

and β0 + β1X1 + . . .+ βp−1Xp−1

Again, estimates can be put in and we get a

sample squared multiple correlation coefficient,

R2
Y ·1...(p−1)

4



To test Ho : ρ2
Y ·12...(p−1) = 0

R2
Y ·12...(p−1)

1−R2
Y ·12...(p−1)

(
n− p
p− 1

) ∼ Fp−1,n−p

Numerically, this is the same as we did before.

When we standardize all our variables to mean

zero and variance one, the covariances become

correlations.

All of multiple regression can be done on cor-

relations alone; all the regression coefficients

are standardized and β0 = 0

What happens if all the independent variables

are uncorrelated?

what are the regression coefficients then?
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Partial Correlation:

Suppose I have three variables Y,X1, X2

I would like to have some way of assessing the

following question:

What is the relation between Y and X1 after

you “control for X2”; or “hold X2 constant’;

or “get rid of the effect of X2”

Approach this question in the following way:

Ŷi = b0 + b1Xi2

X̂i1 = b∗0 + b∗1Xi2

Look at the residuals from these regressions

on X2: Yi − Ŷi and Xi1 − X̂i1

These are “free” of the X2 variable –
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If I correlate the residuals, Yi − Ŷi and Xi1 −
X̂i1, I have the partial correlation of Y and X1

“holding X2 constant”

This is denoted by rY X1·X2
or rY 1·2

If I square it, I get the “coefficient of partial

determination”: r2
Y 1·2

Obviously, I can do this more generally as well,

e.g., define rY 1·234...(p−1)

In fact, there are formulas for these: e.g.,

rY 1·2 =
rY 1 − r12rY 2√

(1− r2
12)(1− r2

Y 2)
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rY 1·23 =
rY 1·3 − r12·3rY 2·3√

(1− r2
12·3)(1− r2

Y 2·3)

There are interesting connections with the mul-

tiple regression model:

r2
Y 1·23 =

SSR(X1|X2, X3)

SSE(X2, X3)
= 1−

SSE(X1, X2, X3)

SSE(X2, X3)

r2
Y 1·2 =

SSR(X1|X2)

SSE(X2)
= 1−

SSE(X1, X2)

SSE(X2)

In testing partial correlations or putting confi-

dence intervals on (using Fisher Z-transformations),

treat partial correlations as regular correlations

but reduce the degrees of freedom by 1 for

each variable “held constant”
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Some other connections with multiple regres-

sion:

Suppose I have two independent variables, X1

and X2, in my model

R2 = 1−
SSE(X1, X2)

SSTO
=
SSR(X1, X2)

SSTO
=

SSR(X2)

SSTO
+
SSR(X1|X2)

SSTO
=

r2
Y 2 + r2

Y (1·2)

the latter term is called the squared part or

semipartial correlation
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Also, we can give some formulas:

rY (1·2) =
rY 1 − r12rY 2√

(1− r2
12)

≤ rY 1·2

This is also the correlation between Y and

Xi1 − X̂i1, where

X̂i1 = b∗0 + b∗1Xi2
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Selection of Independent Variables:

The general question: starting with a (large)

set of variables, can we find a smaller subset

that does well

——————

In multivariate analysis, it is important to re-

member that there is systematic covariation

possible among the variables, and this has a

number of implications for how we proceed.

Automated analysis methods that search through

collections of independent variables to locate

the “best” regression equations (for example,

by forward selection, backward elimination, or

the hybrid of stepwise regression) are among

the most misused statistical methods available

in software packages.

11



They offer a false promise of blind theory build-

ing without user intervention, but the incon-

gruities present in their use are just too great

for this to be a reasonable strategy of data

analysis:

(a) one does not necessarily end up with the

“best” prediction equations for a given number

of variables;

(b) different implementations of the process

don’t necessarily end up with the same equa-

tions;

(c) given that a system of interrelated variables

is present, the variables not selected cannot be

said to be unimportant;
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(d) the order in which variables enter or leave

in the process of building the equation does

not necessarily reflect their importance;

(e) all of the attendant significance testing and

confidence interval construction methods be-

come completely inappropriate.

Several methods, such as the use of Mallow’s

Cp statistic for “all possible subsets (of the in-

dependent variables) regression,” have some

possible mitigating effects on the heuristic na-

ture of the blind methods of stepwise regres-

sion.
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They offer a process of screening all possible
equations to find the better ones, with com-
pensation for the differing numbers of param-
eters that need to be fit.

Although these search strategies offer a justifi-
able mechanism for finding the “best” accord-
ing to ability to predict a dependent measure,
they are somewhat at cross-purposes for how
multiple regression is typically used in the be-
havioral sciences.

What is important is the structure among the
variables as reflected by the regression, and not
so much squeezing the very last bit of variance
accounted for from our data.

More pointedly, if we find a “best” equation
with fewer than the maximum number of avail-
able independent variables present, and we can-
not say that those not chosen are less impor-
tant than those that are, then what is the
point?
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The general problem of model adequacy:

We made the assumption of a linear regression

model, but we also should be concerned with

how well the model represents the data.

One way was formally in our lack-of-fit test

when we had appropriate repeats.

More informally we look at the residuals once

one has fitted the least squares line; hopefully

this might lead to suggestions for obtaining a

better model.

Rather subjective approach that relies heavily

on looking at graphs, and in particular, whether

the estimated residuals, ei = Yi− Ŷi, look more

or less normal with constant variance.
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For example, does a nonlinearity of residuals

suggest we should have included other vari-

ables? (e.g., X2)

Do the residuals show a nonconstant variance

that might be helped by transformations of the

variables or the use of weighted least-squares?

Do the residuals show a pattern if plotted against

another variable, such as time of observation?

Are there obvious outliers among the residuals

that should be explained?

We might also plot other variables directly in

the residual plot (e.g., we might label the resid-

uals as to male or female by using blue or pink)
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