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Chap ter  

 3 
Classification and Regression Trees 

Leland Wilkinson

The TREES module computes classification and regression trees. Classification trees 
include those models in which the dependent variable (the predicted variable) is 
categorical. Regression trees include those in which it is continuous. Within these 
types of trees, the TREES module can use categorical or continuous predictors, 
depending on whether a CATEGORY statement includes some or all of the predictors.

For any of the models, a variety of loss functions is available. Each loss function 
is expressed in terms of a goodness-of-fit statistic—the proportion of reduction in 
error (PRE). For regression trees, this statistic is equivalent to the multiple R2. Other 
loss functions include the Gini index, “twoing” (Breiman et al.,1984), and the phi 
coefficient.

TREES produces graphical trees called mobiles (Wilkinson, 1995). At the end of 
each branch is a density display (box plot, dot plot, histogram, etc.) showing the 
distribution of observations at that point. The branches balance (like a Calder mobile) 
at each node so that the branch is level, given the number of observations at each end. 
The physical analogy is most obvious for dot plots, in which the stacks of dots (one 
for each observation) balance like marbles in bins. 

TREES can also produce a SYSTAT program to code new observations and predict 
the dependent variable. This program can be saved to a file and run from the command 
window or submitted as a program file.

Resampling procedures are available in this feature.
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Statistical Background

Trees are directed graphs beginning with one node and branching to many. They are 
fundamental to computer science (data structures), biology (classification), 
psychology (decision theory), and many other fields. Classification and regression 
trees are used for prediction. In the last two decades, they have become popular as 
alternatives to regression, discriminant analysis, and other procedures based on 
algebraic models. Tree-fitting methods have become so popular that several 
commercial programs now compete for the attention of market researchers and others 
looking for software. 

Different commercial programs produce different results with the same data, 
however. Worse, some programs provide no documentation or supporting material to 
explain their algorithms. The result is a marketplace of competing claims, jargon, and 
misrepresentation. Reviews of these packages (for example, Levine, 1991; Simon, 
1991) use words like “sorcerer,” “magic formula,” and “wizardry” to describe the 
algorithms and express frustration at vendors’ scant documentation. Some vendors, in 
turn, have represented tree programs as state-of-the-art “artificial intelligence” 
procedures capable of discovering hidden relationships and structures in databases. 

Despite the marketing hyperbole, most of the now-popular tree-fitting algorithms 
have been around for decades. The modern commercial packages are mainly 
microcomputer ports (with attractive interfaces) of the mainframe programs that 
originally implemented these algorithms. Warnings of abuse of these techniques are 
not new either (for example, Einhorn, 1972; Bishop et al.,1975). Originally proposed 
as automatic procedures for detecting interactions among variables, tree-fitting 
methods are actually closely related to classical cluster analysis (Hartigan, 1975). 

This introduction will attempt to sort out some of the differences between 
algorithms and illustrate their use on real data. In addition, tree analyses will be 
compared to discriminant analysis and regression.

The Basic Tree Model

The figure below shows a tree for predicting decisions by a medical school admissions 
committee (Milstein et al., 1975). It was based on data for a sample of 727 applicants. 
We selected a tree procedure for this analysis because it was easy to present the results 
to the Yale Medical School admissions committee and because the tree model could 
serve as a basis for structuring their discussions about admissions policy.
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Notice that the values of the predicted variable (the committee’s decision to reject 
or interview) are at the bottom of the tree and the predictors (Medical College 
Admissions Test and college grade point average) come into the system at each node 
of the tree. 

The top node contains the entire sample. Each remaining node contains a subset of 
the sample in the node directly above it. Furthermore, each node contains the sum of 
the samples in the nodes connected to and directly below it. The tree thus splits 
samples. 

Each node can be thought of as a cluster of objects, or cases, that is to be split by 
further branches in the tree. The numbers in parentheses below the terminal nodes 
show how many cases are incorrectly classified by the tree. A similar tree data structure 
is used for representing the results of single and complete linkage and other forms of 
hierarchical cluster analysis (Hartigan, 1975). Tree prediction models add two 
ingredients: the predictor and predicted variables labeling the nodes and branches. 

The tree is binary because each node is split into only two subsamples. Classification 
or regression trees do not have to be binary, but most are. Despite the marketing claims 
of some vendors, nonbinary, or multibranch, trees are not superior to binary trees. Each 
is a permutation of the other, as shown in the figure below. 

The tree on the left (ternary) is not more parsimonious than that on the right (binary). 
Both trees have the same number of parameters, or split points, and any statistics 
associated with the tree on the left can be converted trivially to fit the one on the right. 
A computer program for scoring either tree (IF ... THEN ... ELSE) would look identical. 
For display purposes, it is often convenient to collapse binary trees into multibranch 
trees, but this is not necessary.
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Some programs that do multibranch splits do not allow further splitting on a predictor 
once it has been used. This has an appealing simplicity. However, it can lead to 
unparsimonious trees. It is unnecessary to make this restriction before fitting a tree.

The figure below shows an example of this problem. The upper right tree classifies 
objects on an attribute by splitting once on shape, once on fill, and again on shape. This 
allows the algorithm to separate the objects into only four terminal nodes having 
common values. The upper left tree splits on shape and then only on fill. By not 
allowing any other splits on shape, the tree requires five terminal nodes to classify 
correctly. This problem cannot be solved by splitting first on fill, as the lower left tree 
shows. In general, restricting splits to only one branch for each predictor results in 
more terminal nodes. 
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Categorical or Quantitative Predictors

The predictor variables in the figure on page 43 are quantitative, so splits are created 
by determining cut points on a scale. If predictor variables are categorical, as in the 
figure above, splits are made between categorical values. It is not necessary to 
categorize predictors before computing trees. This is as dubious a practice as recoding 
data well-suited for regression into categories in order to use chi-square tests. Those 
who recommend this practice are turning silk purses into sows’ ears. In fact, if 
variables are categorized before doing tree computations, then poorer fits are likely to 
result. Algorithms are available for mixed quantitative and categorical predictors, 
analogous to analysis of covariance.

Regression Trees

Morgan and Sonquist (1963) proposed a simple method for fitting trees to predict a 
quantitative variable. They called the method Automatic Interaction Detection 
(AID). The algorithm performs stepwise splitting. It begins with a single cluster of 
cases and searches a candidate set of predictor variables for a way to split the cluster 
into two clusters. Each predictor is tested for splitting as follows: sort all the n cases on 
the predictor and examine all  ways to split the cluster in two. For each possible 
split, compute the within-cluster sum of squares about the mean of the cluster on the 
dependent variable. Choose the best of the  splits to represent the predictor’s 
contribution. Now do this for every other predictor. For the actual split, choose the 
predictor and its cut point that yields the smallest overall within-cluster sum of squares.

Categorical predictors require a different approach. Since categories are unordered, 
all possible splits between categories must be considered. For deciding on one split of 
k categories into two groups, this means that 2k-1-1 possible splits must be considered. 
Once a split is found, its suitability is measured on the same within-cluster sum of 
squares as for a quantitative predictor. 

Morgan and Sonquist called their algorithm AID because it naturally incorporates 
interaction among predictors. Interaction is not correlation. It has to do, instead, with 
conditional discrepancies. In the analysis of variance, interaction means that a trend 
within one level of a variable is not parallel to a trend within another level of the same 
variable. In the ANOVA model, interaction is represented by cross-products between 
predictors. In the tree model, it is represented by branches from the same node that 
have different splitting predictors further down the tree. 

n 1–

n 1–
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The figure below shows a tree without interactions on the left and with interactions 
on the right. Because interaction trees are a natural by-product of the AID splitting 
algorithm, Morgan and Sonquist called the procedure “automatic.” In fact, AID trees 
without interactions are quite rare for real data, so the procedure is indeed automatic. 
To search for interactions using stepwise regression or ANOVA linear modeling, we 
would have to generate  interactions among p predictors and compute partial 
correlations for every one of them in order to decide which ones to include in our 
formal model. 

.

Classification Trees

Regression trees are parallel to regression/ANOVA modeling, in which the dependent 
variable is quantitative. Classification trees are parallel to discriminant analysis and 
algebraic classification methods. Kass (1980) proposed a modification to AID called 
CHAID for categorized dependent and independent variables. His algorithm 
incorporated a sequential merge-and-split procedure based on a chi-square test 
statistic. Kass was concerned about computation time (although this has since proved 
an unnecessary worry), so he decided to settle for a suboptimal split on each predictor 
instead of searching for all possible combinations of the categories. Kass’s algorithm 
is like sequential crosstabulation. For each predictor: 

� Crosstabulate the m categories of the predictor with the k categories of the 
dependent variable.

� Find the pair of categories of the predictor whose  subtable is least 
significantly different on a chi-square test and merge these two categories.

� If the chi-square test statistic is not “significant” according to a preset critical value, 
repeat this merging process for the selected predictor until no nonsignificant chi-
square is found for a subtable.

2p p– 1–
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� Choose the predictor variable whose chi-square is the largest and split the sample 
into  subsets, where l is the number of categories resulting from the merging 
process on that predictor.

� Continue splitting, as with AID, until no significant chi-squares result. 

The CHAID algorithm saves computer time, but it is not guaranteed to find the splits 
that predict best at a given step. Only by searching all possible category subsets can we 
do that. CHAID is also limited to categorical predictors, so it cannot be used for 
quantitative or mixed categorical-quantitative models, as in the figure on page 43. 
Nevertheless, it is an effective way to search heuristically through rather large tables 
quickly. 

Note: Within the computer science community, there is a categorical splitting literature 
that often does not cite the statistical work and is, in turn, not frequently cited by 
statisticians (although this has changed in recent years). Quinlan (1986, 1992), the best 
known of these researchers, developed a set of algorithms based on information theory. 
These methods, called ID3, iteratively build decision trees based on training samples 
of attributes. 

Stopping Rules, Pruning, and Cross-Validation

AID, CHAID, and other forward-sequential tree-fitting methods share a problem with 
other tree-clustering methods—where do we stop? If we keep splitting, a tree will end 
up with only one case, or object, at each terminal node. We need a method for 
producing a smaller tree other than the exhaustive one. One way is to use stepwise 
statistical tests, as in the F-to-enter or alpha-to-enter rule for forward stepwise 
regression. We compute a test statistic (chi-square, F, etc.), choose a critical level for 
the test (sometimes modifying it with the Bonferroni inequality), and stop splitting any 
branch that fails to meet the test (Wilkinson, 1979, for a review of this procedure in 
forward selection regression). 

Breiman et al. (1984) showed that this method tends to yield trees with too many 
branches and can also fail to pursue branches that can add significantly to the overall 
fit. They advocate, instead, pruning the tree. After computing an exhaustive tree, their 
program eliminates nodes that do not contribute to the overall prediction. They add 
another essential ingredient, however—the cost of complexity. This measure is similar 
to other cost statistics, such as Mallows’  (Neter et al.,1996), which add a penalty 
for increasing the number of parameters in a model. Breiman’s method is not like 
backward elimination stepwise regression. It resembles forward stepwise regression 

l m≤

Cp
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with a cutting back on the final number of steps using a different criterion than the F-
to-enter. This method still cannot do as well as an exhaustive search, which would be 
prohibitive for most practical problems.

Regardless of how a tree is pruned, it is important to cross-validate it. As with 
stepwise regression, the prediction error for a tree applied to a new sample can be 
considerably higher than for the training sample on which it was constructed. 
Whenever possible, data should be reserved for cross-validation. 

Loss Functions

Different loss functions are appropriate for different forms of data. TREES offers a 
variety of functions that are scaled as proportional reduction in error (PRE) statistics. 
This allows you to try different loss functions on a problem and compare their 
predictive validity.

For regression trees, the most appropriate loss functions are least-squares, trimmed 
mean, and least absolute deviations. Least-squares loss yields the classic AID tree. At 
each split, cases are classified so that the within-group sum of squares about the mean 
of the group is as small as possible. The trimmed mean loss works the same way but 
first trims 20% of outlying cases (10% at each extreme) in a splittable subset before 
computing the mean and sum of squares. It can be useful when you expect outliers in 
subgroups and don’t want them to influence the split decisions. LAD loss computes 
least absolute deviations about the mean rather than squares. It, too, gives less weight 
to extreme cases in each potential group.

For classification trees, use the phi coefficient (the default), Gini index, or “twoing.” 
The phi coefficient is c2/n for a  table formed by the split on k categories of the 
dependent variable. The Gini index is a variance estimate based on all comparisons of 
possible pairs of values in a subgroup. Finally, twoing is a word coined by Breiman et 
al. (1984) to describe splitting k categories as if it were a two-category splitting 
problem. For more information about the effects of Gini and twoing on computations, 
see Breiman et al. (1984).

Geometry

Most discussions of trees versus other classifiers compare tree graphs and algebraic 
equations. However, there is another graphic view of what a tree classifier performs. If 
we look at the cases embedded in the space of the predictor variables, we can ask how 

2 k×
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a linear discriminant analysis partitions the cases and how a tree classifier partitions 
them.

The figure below shows how cases are split by a linear discriminant analysis. There 
are three subgroups of cases in this example. The cutting planes are positioned 
approximately halfway between each pair of group centroids. Their orientation is 
determined by the discriminant analysis. With three predictors and four groups, there 
are six cutting planes, although only four planes show in the figure. The fourth group 
is assumed to be under the bottom plane in the figure. In general, if there are g groups, 
the linear discriminant model cuts them with g(g-1)/2 planes. 

The figure below shows how a tree-fitting algorithm cuts the same data. Only the 
nearest subgroup (dark spots) shows; the other three groups are hidden behind the rear 
and bottom cutting planes. Notice that the cutting planes are parallel to the axes. While 
this would seem to restrict the discrimination compared to the more flexible angles 
allowed by the discriminant planes, the tree model allows interactions between 
variables, which do not appear in the ordinary linear discriminant model. Notice, for 
example, that one plane splits on the X variable, but the second plane that splits on the 
Y variable cuts only the values to the left of the X partition. The tree model can continue 
to cut any of these subregions separately, unlike the discriminant model, which can cut 
only globally and with g(g-1)/2 planes. This is a mixed blessing, however, since tree 
methods, as we have seen, can over-fit the data. It is critical to test them on new 
samples.

Tree models are not usually related by authors to dimensional plots in this way, but 
it is helpful to see that they have a geometric interpretation. Alternatively, we can 
construct algebraic expressions for trees. They would require dummy variables for any 
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categorical predictors and interaction (or product) terms for every split whose 
descendants (or lower nodes) did not involve the same variables on both sides. 

X
Y

Z
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Classification and Regression Trees in SYSTAT

Classification and Regression Trees Dialog Box

To open the Classification and Regression Trees dialog box, from the menus choose:

Advanced 
Trees (C&RT)… 

Model selection and estimation are available in the Model tab of the Classification and 
Regression Trees dialog box:

Dependent. The variable you want to examine. The dependent variable should be 
continuous or categorical numeric variables (for example, INCOME).

Independent(s). Select one or more continuous or categorical variables (grouping 
variables). 

Expand model. Adds all possible sums and differences of the predictors to the model.

Loss. Select a loss function from the drop-down list.
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� Least-squares. The least-squared loss (AID) minimizes the sum of the squared 
deviations.

� Trimmed mean. The trimmed mean loss (TRIM) “trims” the extreme observations 
(20%) prior to computing the mean.

� Least absolute deviations. The least absolute deviations loss (LAD). 

� Phi coefficient. The phi coefficient loss computes the correlation between two 
dichotomous variables. 

� Gini index. The Gini index loss measures inequality or dispersion.

� Twoing. The twoing loss function.

Display nodes as. Select the type of density display. The following types are available:

� Box plot. Plot that uses boxes to show a distribution shape, central tendency, and 
variability.

� Dot histogram (Dit). Produces a density display that looks similar to a histogram. 
Unlike histograms, dot histograms represent every observation with a unique 
symbol, so they are especially suited for small- to moderate-size samples of 
continuous data. 

� Symmetrical dot density (Dot). Plot that displays dots at the exact locations of data 
values.

� Jittered dot density. Plot that calculates the exact locations of the data values, but 
jitters points randomly on a short vertical axis to keep points from colliding. 

� Density stripes. Places vertical lines at the location of data values along a 
horizontal data scale and looks like supermarket bar codes.

� Text. Displays text output in the tree diagram including the mode, sample size, and 
impurity value.
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Stopping Criteria  

The Stopping Criteria tab contains the parameters for controlling stopping. 

Specify the criteria for splitting to stop.

Number of splits. Maximum number of splits.

Minimum proportion. Minimum proportion reduction in error (PRE) for the tree 
allowed at any split.

Split minimum. Minimum split value allowed at any node. 

Minimum objects at end of trees. Minimum count allowed at any node.



I-54

Chapter 3

Using Commands

After selecting a file with USE FILENAME, continue with:

Usage Considerations
Types of data. TREES uses rectangular data only.

Print options. The default output includes the splitting history and summary statistics. 
PLENGTH LONG adds a SYSTAT program for classifying new observations. You can 
cut and paste this SYSTAT program into a commandspace and submit it to classify new 
data on the same variables for cross-validation and prediction.

Quick Graphs. TREES produces a Quick Graph for the fitted tree. The nodes may 
contain text describing split parameters or they may contain density graphs of the data 
being split. A dashed line indicates that the split is not significant.

Saving files. TREES does not save files. Use the SYSTAT program under PLENGTH 

LONG to classify your data, compute residuals, etc., on old or new data.

BY groups. TREES analyzes data by groups. Your file need not be sorted on the BY 
variable(s).

Case frequencies. FREQ <variable> increases the number of cases by the FREQ variable.

Case weights. WEIGHT is not available in TREES.

Examples

The following examples illustrate the features of the TREES module. The first example 
shows a classification tree for the Fisher-Anderson iris data set. The second example is 
a regression tree on an example taken from Breiman et al. (1984), and the third is a 
regression tree predicting the danger of a mammal being eaten by predators.

TREES
MODEL yvar = xvarlist / EXPAND
ESTIMATE / PMIN=d, SMIN=d, NMIN=n, NSPLIT=n, LOSS=LSQ 

TRIM LAD PHI GINI TWOING, DENSITY=STRIPE JITTER DOT DIT BOX
SAMPLE =BOOT(m,n) or SIMPLE(m,n) or JACK
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Example 1  
Classification Tree

This example shows a classification tree analysis of the Fisher-Anderson iris data set 
featured in Discriminant Analysis. We use the Gini loss function and display a 
graphical tree, or mobile, with dot histograms, or dit plots. 

The input is:

The output is:

The PRE for the whole tree is 0.89 (similar to R2 for a regression model), which is not 
bad. Before exulting, however, we should keep in mind that while Fisher chose the iris 
data set to demonstrate his discriminant model on real data, it is barely worthy of the 
effort. We can classify the data almost perfectly by looking at a scatterplot of petal 
length against petal width. 

The unique SYSTAT display of the tree is called a mobile (Wilkinson, 1995). The 
dit plots are ideal for illustrating how it works. Imagine each case is a marble in a box 

USE IRIS
LAB SPECIES/1=’SETOSA’,2=’VERSICOLOR’,3=’VIRGINICA’
TREES

MODEL SPECIES=SEPALLEN,SEPALWID,PETALLEN,PETALWID
ESTIMATE/LOSS=GINI,DENSITY=DIT

Categorical Values Encountered during Processing are

  Variables    Levels                  
 ---------------------------------------------
  SPECIES      setosa   versicolor   virginica
  (3levels)                                     

  Split   Variable     PRE   Improvement
 ---------------------------------------
  1       PETALLEN   0.500         0.500
  2       PETALWID   0.890         0.390

Fitting Method                         : Gini Index 
Predicted Variable                     : SPECIES    
Minimum Split Index Value              : 0.050      
Minimum Improvement in PRE             : 0.050      
Maximum Number of Nodes Allowed        : 21         
Minimum Count Allowed in Each Node     : 5          
Number of Terminal Nodes in Final Tree : 3          
Proportional Reduction in Error (PRE)  : 0.890      

  Node From     Count        Mode   Impurity   Split Variable   Cut Value    Fit
 -------------------------------------------------------------------------------
  1       0       150                  0.333         PETALLEN       3.000  0.500
  2       1        50      setosa      0.000                               
  3       1       100                  0.250         PETALWID       1.800  0.779
  4       3        54  versicolor      0.084                               
  5       3        46   virginica      0.021      
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at each node. The mobile simply balances all of the boxes. The reason for doing this is 
that we can easily see splits that cut only a few cases out of a group. These nodes will 
hang out conspicuously. It is fairly evident in the first split, for example, which cuts 
the population into half as many cases on the right (petal length less than 3) as on the 
left. 

This display has a second important characteristic that is different from other tree 
displays. The mobile coordinates the polarity of the terminal nodes (red on color 
displays) rather than the direction of the splits. This design has three consequences: we 
can evaluate the distributions of the subgroups on a common scale, we can see the 
direction of the splits on each splitting variable, and we can look at the distributions on 
the terminal nodes from left to right to see how the whole sample is split on the 
dependent variable. 

The first consequence means that every box containing data is a miniature density 
display of the subgroup’s values on a common scale (same limits and same direction). 
We don’t need to “drill down” on the data in a subgroup to see its distribution. It is 
immediately apparent in the tree. Suppose you prefer box plots or other density 
displays, simply use:

DENSITY = BOX

or another density as an ESTIMATE option. Dit plots are most suitable for classification 
trees, however; because they spike at the category values, they look like bar charts for 
categorical data. For continuous data, dit plots look like histograms. Although they are 
my favorite density display for this purpose, they can be time consuming to draw on 
large samples, so text summary is the default graphical display. 

The second consequence of ordering the splits according to the polarity of the 
dependent (rather than the independent) variable is that the direction of the split can be 
recognized immediately by looking at which side (left or right) the split is displayed 
on. Notice that PETALLEN < 3.000 occurs on the left side of the first split. This means 
that the relation between petal length and species (coded 1..3) is positive. The same is 
true for petal width within the second split group because the split banner occurs on the 
left. Banners on the right side of a split indicate a negative relationship between the 
dependent variable and the splitting variable within the group being split, as in the 
regression tree examples. 

The third consequence of ordering the splits is that we can look at the terminal nodes 
from left to right and see the consequences of the split in order. In the present example, 
notice that the three species are ordered from left to right in the same order that they 
are coded. You can change this ordering for a categorical variable with the CATEGORY 
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and ORDER commands. Adding labels, as we did here, makes the output more 
interpretable. 

Example 2  
Regression Tree with Box Plots

This example shows a simple AID model. The data set is Boston housing prices, cited 
in Belsley et al. (1980) and used in Breiman et al. (1984). We are predicting median 
home values (MEDV) from a set of demographic variables. 

The input is:

USE BOSTON
TREES
     MODEL MEDV=CRIM..LSTAT
     ESTIMATE/PMIN=.005,DENSITY=BOX

Decision Tree

SPECIES

PETALLEN < 3.00

PETALWID < 1.80
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The output is:

The Quick Graph of the tree more clearly reveals the sample-size feature of the mobile 
display. Notice that a number of the splits, because they separate out a few cases only, 
are extremely unbalanced. This can be interpreted in two ways, depending on context. 
On the one hand, it can mean that outliers are being separated so that subsequent splits 
can be more powerful. On the other hand, it can mean that a split is wasted by focusing 
on the outliers when further splits don’t help to improve the prediction. The former 
case appears to apply in our example. The first split separates out a few expensive 
housing tracts (the median values have a positively skewed distribution for all tracts), 
which makes subsequent splits more effective. The box plots in the terminal nodes are 

Split   Variable     PRE   Improvement
 -----------------------------------------
  1             RM   0.453         0.453
  2             RM   0.524         0.072
  3          LSTAT   0.696         0.171
  4        PTRATIO   0.706         0.010
  5          LSTAT   0.723         0.017
  6            DIS   0.782         0.059
  7           CRIM   0.809         0.027
  8            NOX   0.815         0.006

Fitting Method                         : Least Squares 
Predicted Variable                     : MEDV          
Minimum Split Index Value              : 0.050         
Minimum Improvement in PRE             : 0.005         
Maximum Number of Nodes Allowed        : 21            
Minimum Count Allowed in Each Node     : 5             
Number of Terminal Nodes in Final Tree : 9             
Proportional Reduction in Error (PRE)  : 0.815         

  Node   From   Count     Mean    Standard   Split Variable   Cut Value     Fit
                                 Deviation                                          
--------------------------------------------------------------------------------
  1         0     506   22.533       9.197               RM       6.943   0.453
  2         1     430   19.934       6.353            LSTAT      14.430   0.422
  3         1      76   37.238       8.988               RM       7.454   0.505
  4         3      46   32.113       6.497            LSTAT      11.660   0.382
  5         3      30   45.097       6.156          PTRATIO      18.000   0.405
  6         2     255   23.350       5.110              DIS       1.413   0.380
  7         2     175   14.956       4.403             CRIM       7.023   0.337
  8         5      25   46.820       3.768                               
  9         5       5   36.480       8.841                               
  10        4      41   33.500       4.594                               
  11        4       5   20.740       9.080                               
  12        6       5   45.580       9.883                               
  13        6     250   22.905       3.866                               
  14        7     101   17.138       3.392              NOX       0.538   0.227
  15        7      74   11.978       3.857                               
  16       14      24   20.021       3.067                               
  17       14      77   16.239       2.975                
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narrow. 

Example 3  
Regression Tree with Dit Plots

This example involves predicting the danger of a mammal being eaten by predators 
(Allison and Cicchetti, 1976). The predictors are hours of dreaming and non-dreaming 
sleep, gestational age, body weight, and brain weight. Although the danger index has 
only five values, we are treating it as a quantitative variable with meaningful numerical 
values. 

Decision Tree

MEDV

RM < 6.94

LSTAT < 14.43 RM < 7.45

LSTAT < 11.66 PTRATIO < 18.00CRIM < 7.02 DIS < 1.41

NOX < 0.54



I-60

Chapter 3

The input is:

The output is:

USE SLEEP
TREES
     MODEL DANGER=BODY_WT,BRAIN_WT,
                  SLO_SLEEP,DREAM_SLEEP,GESTATE
     ESTIMATE / DENSITY=DIT

18 Cases Deleted due to Missing Data.

  Split    Variable     PRE   Improvement
 ------------------------------------------
  1     DREAM_SLEEP   0.404         0.404
  2         BODY_WT   0.479         0.074
  3       SLO_SLEEP   0.547         0.068

Fitting Method                         : Least Squares 
Predicted Variable                     : DANGER        
Minimum Split Index Value              : 0.050         
Minimum Improvement in PRE             : 0.050         
Maximum Number of Nodes Allowed        : 21            
Minimum Count Allowed in Each Node     : 5             
Number of Terminal Nodes in Final Tree : 4             
Proportional Reduction in Error (PRE)  : 0.547         

 Node   From   Count    Mean    Standard   Split Variable   Cut Value   Fit 
                               Deviation                               
 ---------------------------------------------------------------------------
  1        0      44   2.659       1.380      DREAM_SLEEP       1.200  0.404
  2        1      14   3.929       1.072          BODY_WT       4.190  0.408
  3        1      30   2.067       1.081        SLO_SLEEP      12.800  0.164
  4        2       6   3.167       1.169                               
  5        2       8   4.500       0.535                               
  6        3      23   2.304       1.105                               
  7        3       7   1.286       0.488                       
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The prediction is fairly good (PRE = 0.547). The Quick Graph of this tree illustrates 
another feature of mobiles. The dots in each terminal node are assigned a separate 
color. This way, we can follow their path up the tree each time they are merged. If the 
prediction is perfect, the top density plot will have colored dots perfectly separated. 
The extent to which the colors are mixed in the top plot is a visual indication of the 
badness-of-fit of the model. The fairly good separation of colors for the sleep data is 
quite clear on the computer screen or with color printing but less evident in a black and 
white figure. 

Decision Tree

DANGER

DREAM_SLEEP < 1.20

SLO_SLEEP < 12.80 BODY_WT < 4.19
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Computation

Algorithms

TREES uses algorithms from Breiman et al. (1984) for its splitting computations.

Missing Data

Missing data are eliminated from the calculation of the loss function for each split 
separately.
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