
Two-way fixed-effects analysis of variance with

replication:

In one-way ANOVA, we had one set of treat-

ments and our concern was whether the means

differed significantly from one another (using

the omnibus F -test)

For example:

Group 1 Group 2 Group 3
Drug 1 Drug 2 Drug 3

We assigned subjects at random to these groups,

gave them a certain drug, and measured some

dependent variable, e.g., blood pressure, tem-

perature, etc.

A one-way ANOVA tells us whether the aver-

age values for each of the groups are signifi-

cantly different from one another.
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We now wish to generalize to what is callled a

two-way fixed effects analysis of variance

1) Two-way because we categorize on the ba-

sis of two factors rather than one, e.g.,

factor 1
Drug 1 Drug 2 Drug 3

factor 2 Male
Female

This is called a (2 by 3) Factorial design:

factor 2 (sex) is a status factor; factor 1 (drugs)

is an experimental factor

We assign subjects at random within each sex
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2) Fixed effects: this has the same meanings

as before. We wish to generalize only to the

levels of the factors that actually appear in the

design

3) Replication: more than one subject in each

group

3) If we have an equal number of observations

in cells, the design is said to be “orthogonal”

A factorial design could be viewed as two sep-

arate one-way analyses:

between the three levels of drugs, collapsing

over sex; or between the two levels of sex, col-

lapsing over drugs
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The advantage that the two-way design has

is in allowing you to separate out effects that

could appear only at one level of one factor

and not the other.

As an example, suppose we have means in our

design of the following form:

Drug 1 Drug 2 Drug 3
Male 100 80 90 90

Female 80 100 90 90
90 90 90

Suppose a high scores means a bad effect,

i.e., 100 means death; 90 means sickness; 80

means health

What drug would you give to a male or a fe-

male?

But yet, the main effect means are all the

same.
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Another example:

Method 1 Method 2
Low SES 50 10 30
High SES 10 50 30

30 30

This is an example of an “aptitude-treatment”

interaction: give method 1 to low SES stu-

dents and method 2 to high SES students

For years, the search for powerful aptitude-

treatment interactions was like the search for

the holy grail – they were never found

Two factors are said to be “completely crossed”

if all levels of one appear with each level of the

other

Two factors are said to be “nested” if levels

of one factor only occur within certain levels

of another
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School and method are “confounded” in the

following design:

School A School B
Method 1 Method 2 Method 3 Method 4

In the following, School and Method are com-

pletely crossed (i.e., no nesting)

School A School B
Method 1 Method 2 Method 1 Method 2

We will worry about completely crossed (and

unnested) factors for now
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Linear model:

One-way: Yij = µi + εij = µ· + τi + εij

where τi = µi − µ·

Two-way: Yijk = µij + εijk,

for the ith level on Factor A;

for the jth level on Factor B;

for the kth subject;

1 ≤ i ≤ a; 1 ≤ j ≤ b; 1 ≤ k ≤ n;

εijk ∼ N(0, σ2), and all are independent

We assume the n’s are equal so nT = abn
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Define:

the grand mean as: µ·· = 1
ab

∑a
i=1

∑b
j=1 µij

the mean in row i: µi· = 1
b

∑b
j=1 µij

the mean in column j: µ·j = 1
a

∑a
i=1 µij

the main effect of the ith level of factor A:

αi = µi· − µ··

the main effect of the jth level of factor B:

βj = µ·j − µ··

the interaction effect of the ith level of A and

the jth level of B:

(αβ)ij = µij − αi − βj − µ·· =

µij − µi· − µ·j + µ··

8



Note: µij = µ·· + αi + βj + (αβ)ij

Thus: Yijk = µ·· + αi + βj + (αβ)ij + εijk

If all the (αβ)ij = 0, the model is said to be

“additive”

We have restrictions on the various effects:

∑a
i=1αi = 0;

∑b
j=1 βj = 0;

∑a
i=1(αβ)ij = 0

∑b
j=1(αβ)ij = 0

To estimate the various effects just plug the

sample mean values into their definitions
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It is possible to graph the means and visually
look for main effects and interaction

Suppose we place (mark) the levels of Factor
A along a horizontal axis and plot the means
for the levels of Factor B as lines in the two-
dimensional plot (the vertical axis is calibrated
according to the values of the means)

If the lines for the levels of Factor B are all
horizontal, there is no main effect for A

If the lines for the levels of Factor B are all
coincident (i.e., they lie on top of each other),
there is no main effect for B

If the lines for the levels of Factor B are all
parallel, there is no interaction

If the lines cross no matter which factor is
placed along the horizontal axis, the interac-
tion is said to be “disordinal”

Think Mary Poppins: horizont(inality); paral-
lel(lility); coincident(aly)
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To get the necessary sums of squares and the

ANOVA table, notice the identity:

(Yijk − Ȳ···) = (Yijk − Ȳij·) + (Ȳi·· − Ȳ···)+

(Ȳ·j· − Ȳ···) + (Ȳij· − Ȳi·· − Ȳ·j· + Ȳ···)

The original deviation from the grand mean is

split into terms for error, the two main effects,

and the interaction

SSTO (Sum of Squares Total):

∑a
i=1

∑b
j=1

∑n
k=1(Yijk − Ȳ···)2
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SSE (Sum of Squares Error):

∑a
i=1

∑b
j=1

∑n
k=1(Yijk − Ȳij·)2

SSA (Sum of Squares for Factor A):

nb
∑a
i=1(Ȳi·· − Ȳ···)2

SSB (Sum of Squares for Factor B):

na
∑b
j=1(Ȳ·j· − Ȳ···)2

SSAB (Sum of Squares for Interaction):

n
∑a
i=1

∑b
j=1(Ȳij· − Ȳi·· − Ȳ·j· + Ȳ···)2
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If I view my factorial design as a one-way with

ab levels, then the SSTR is the sum of SSA,

SSB, and SSAB

Here’s what the ANOVA table would look like:

Source SS df MS F

Factor A SSA a− 1 MSA MSA
MSE

∼

Fa−1,ab(n−1)

Factor B SSB b− 1 MSB MSB
MSE

∼

Fb−1,ab(n−1)

A × B SSAB (a− 1)(b− 1) MSAB MSAB
MSE

∼

F(a−1)(b−1),ab(n−1)

Error SSE ab(n− 1) MSE

Total SSTO abn− 1
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Computational Formulas:

Need the following:

(1) Total Sum:
∑a
i=1

∑b
j=1

∑n
k=1 Yijk

(2) Total Sum of Squares:
∑a
i=1

∑b
j=1

∑n
k=1 Y

2
ijk

(3) Sum Rows:
∑b
j=1

∑n
k=1 Yijk

(4) Sum Columns:
∑a
i=1

∑n
k=1 Yijk

(5) Sum Cell:
∑n
k=1 Yijk
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SSTO = (2) − (1)2

nab

SSA =
∑

(3)2

bn − (1)2

nab

SSB =
∑

(4)2

an − (1)2

nab

SSE = (2) −
∑

(5)2

n

The SSAB for interaction is obtained by sub-

traction
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Regression Approach to two-way analysis of

variance:

Because we use the “effect form” of the linear

model, we have to express one α in terms of

the other α’s, one β in terms of the other β’s,

and b+ a− 1 of the αβ’s in terms of the other

αβ’s

As an example, consider the simple 2×2 design

(the cell means are indicated):

Factor B
1 2

Factor A 1 µ11 µ12
2 µ21 µ22
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Y =


11
12
21
22

 =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

×


µ·
α1
β1

(αβ)11

 + ε

All of this can be generalized to an arbitrary

Factorial Design (A×B) with ab total cells

All of the various tests can now be done by

comparing full and reduced models (even, by

the way, when the cell sizes are not all the

same)
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Redoing two-way ANOVA in terms of orthog-

onal contrasts:

Consider the 2 × 2 design:

Factor B
1 2

Factor A 1 µ11 µ12
2 µ21 µ22

Lay this out in a one-way ANOVA with four

cells:

Group 1 Group 2 Group 3 Group 4
µ11 µ12 µ21 µ22

L1 1 1 -1 -1
L2 1 -1 1 -1
L3 1 -1 -1 1
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The three contrasts are mutually orthogonal

and SS(L1) = SSA; SS(L2) = SSB; SS(L3) =

SSAB

Also, SSTR = SS(L1) + SS(L2) + SS(L3) =

SSA+ SSB + SSAB
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