
Two-way ANOVA under Model II (where both
factors are random):

For example, we might be studying the effects
of particular target stimuli and levels of com-
plexity – and we randomly sample both factors
to assess their (joint) effects

The Model:

Yijk = µ··+ ai + bj + (ab)ij + εijk

where

ai ∼ N(0, σ2
a), bi ∼ N(0, σ2

b ),(ab)ij ∼ N(0, σ2
ab),

εijk ∼ N(0, σ2), and everything is independent
of everything

Because we have only sampled levels, it can’t
be assumed that interactions sum to zero;

thus, the expectations of the various mean-
squares are different compared to Model I
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We restrict our discussion to equal n’s

Model I Model II

E(MSA) σ2 + nb
∑
α2
i

a−1 σ2 + nbσ2
a + nσ2

ab

E(MSB) σ2 + na

∑
β2
j

b−1 σ2 + naσ2
b + nσ2

ab

E(MSAB) σ2 + n

∑∑
(αβ)2

ij

(a−1)(b−1) σ2 + nσ2
ab

E(MSE) σ2 σ2

Thus, to test:

Ho : σ2
a = 0; MSA

MSAB ∼ Fa−1,(a−1)(b−1)

Ho : σ2
b = 0; MSB

MSAB ∼ Fb−1,(a−1)(b−1)

Ho : σ2
ab = 0; MSAB

MSE ∼ F(a−1)(b−1),(n−1)ab

Question: how did we do the comparable tests

under Model I?
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Variance component estimation:

σ̂2
a = (MSB−MSAB)

an

σ̂2
b = (MSA−MSAB)

bn

σ̂2
ab = (MSAB−MSE)

n

σ̂2 = MSE

Intraclass correlations (also, think generaliz-

ability coefficients in test theory):

ρ̂IA ≡
σ̂2
a

σ̂2
a+σ̂2

b+σ̂2
ab+σ̂2
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Model III: the Mixed Model

One factor is random and one factor is fixed

Suppose A is fixed and B is random

Yijk = µ··+ αi + bj + (αb)ij + εijk

bj ∼ N(0, σ2
b ); (αb)ij ∼ N(0, a−1

a σ2
αb);

εijk ∼ N(0, σ2); and independence (almost) ev-

erywhere

∑a
i=1αi = 0 and

∑a
i=1(αb)ij = 0

(αb)ij and (αb)
i
′
j
′ are dependent if j = j

′
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E(MSA) = σ2 + nb
∑
α2
i

a−1 + nσαb

E(MSB) = σ2 + naσ2
b

E(MSAB) = σ2 + nσ2
αb

E(MSE) = σ2

Thus, to test:

Ho : αi = 0; MSA
MSAB ∼ Fa−1,(a−1)(b−1)

Ho : σ2
b = 0; MSB

MSE ∼ Fb−1,(a−1)(b−1)

These last two are counterintuitive given the

denominators (i.e., MSE is used to test the

random factor; MSAB is used to test the fixed

factor)

Ho : σ2
ab = 0; MSAB

MSE ∼ F(a−1)(b−1),(n−1)ab
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Some estimation is possible but no intraclass

correlations

α̂i = µ̂i· − µ̂··

σ̂2
b = (MSB−MSE)

bn

σ̂2
αb = (MSAB−MSE)

n

————-

Now, let’s see what happens when n = 1 (i.e.,

we don’t have replication);

obviously, there is no MSE but the other terms

can be calculated
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Model I Model II Model III (A fixed)

E(MSA) σ2 + b

∑
α2
i

a−1
σ2 + bσ2

a + σ2
ab σ2 + b

∑
α2
i

a−1
+ σ2

αb

E(MSB) σ2 + a

∑
β2
j

b−1
σ2 + aσ2

b + σ2
ab σ2 + aσ2

b

E(MSAB) σ2 +

∑∑
(αβ)2

ij

(a−1)(b−1)
σ2 + σ2

ab σ2 + σ2
αb

In Model I, we can test both main effects if

(αβ)ij = 0, or, if it can be assumed; they can’t

be tested in the usual way since there is no

MSE to serve as a denominator

(We might note in passing that it is possible to

test if a particular kind of interaction is present

– through Tukey’s one-degree-of-freedom test

for nonadditivity – but we will not pursue this)
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In Model II, we can test both main effects since

MSAB is used as a denominator in each case

In Model III, we can test the fixed factor; but

only if σ2
αb can be assumed zero can we test

the random factor

In Model II, multiple comparisons are not done;

comparisons would be (nonsensically) random

variables

In Model III, we can do multiple comparisons

on the fixed factor using MSAB in place of

MSE
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When n = 1, we typically refer to these designs

as “randomized block designs”; they extend

the paired t-test, particularly under Model III

where the blocks of subjects are considered the

random factor

blocks consist of b subjects each that are ran-

domly assigned to the treatments (the Fixed

column factor)

The same caveat happens as before in com-

paring the independent and dependent t

We lose degrees-of-freedom since we are us-

ing interaction in the denominator (over doing

a one-way anova); we therefore need to have

a blocking or matching variable that does ac-

count for a lot of Sum of Squares

(Remember, SSE in the one-way anova is now

the sum of the SS blocks and SS interaction)
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In these cases it may still make sense to assume

the error terms are independent but what hap-

pens if the block is a single subject observed

over the treatments?

The error terms are probably not independent

and have some degree of correlation

Here’s the initial repeated measures design un-

der Model III:

We relax the error term independence assump-

tion (as we note below)

Yij = µ··+ ai + βj + (aβ)ij + εij

where the subjects are the rows (Factor A,

(now) assumed random); the treatments are

the columns (Factor B, (now) assumed fixed)
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ai ∼ N(0, σ2
a); βj is fixed; (aβ)ij ∼ N(0, (b−1)

b σ2
aβ);

εij ∼ N(0, σ2); the correlation between εij and

ε
ij
′ for j 6= j

′
is a constant ρ

This is the same for all treatment pairs;

it is called the assumption of compound sym-

metry
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E(MSA) = σ2[1 + (b− 1)ρ] + bσ2
a

E(MSB) = σ2[1− ρ] + a

∑b
j=1 β

2
j

b−1 + σ2
aβ

E(MSAB) = σ2[1− ρ] + σ2
aβ

The test we are looking for: (Ho : βj = 0)

MSB
MSAB ∼ Fb−1,(a−1)(b−1)
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Source df SS MS
Between a− 1 SSA MSA
Subjects

(factor A)

Within a(b− 1)
Subjects

Between b− 1 SSB MSB
Treatments
(factor B)

Subjects × (a− 1)(b− 1) SSAB MSAB
Treatments

(A × B)

13



Issues in Repeated-Measures Analyses:

The analysis of repeated measures generally

needs special treatment in that the usual mod-

els are not very trustworthy and can lead to

erroneous conclusions.

The starting place is commonly a Mixed Model

III ANOVA with a fixed treatment factor and

a subject factor considered random.

To model repeated observations justifying the

usual F -ratio test statistic of Mean-Square Treat-

ments to Mean-Square Interaction, an assump-

tion is made that the observations within a

subject are correlated.

The use of the usual F -ratio, however, requires

that all these correlations be the same irrespec-

tive of which pair of treatments is considered

(an assumption of “compound symmetry”).
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The compound symmetry assumption may be

reasonable when the treatment times are ran-

domly assigned, but if the responses are ob-

tained sequentially, then possibly not.

Treatments further apart in time are typically

less correlated because of fatigue, boredom,

familiarity, and so on.



Unfortunately, there is strong evidence of non-

robustness in the use of the equicorrelation as-

sumption when it is not true, with too many

false rejections of the null hypothesis of no

treatment differences.

A way around this nonrobustness is implemented

in many software packages.

If we knew the structure of all the variances

and covariances among the treatments, we could

obtain a parameter, say, θ, that would give

an appropriate correction for the degrees of

freedom of the F -distribution against which to

compare the calculated F -ratio;

that is, we would use Fθ(B−1),θ(A−1)(B−1), where

there are B treatments and A subjects.

Although θ is unknown, there are two possible

strategies to follow:
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estimate θ with Huynh–Feldt procedures (as is

done, for example, in SYSTAT);

or use the greatest reduction possible with the

discounting bound of 1/(B − 1) (that is, the

Geisser–Greenhouse result of 1/(B − 1) ≤ θ,

also as done when an analysis is carried out

using SYSTAT).

So, if a rejection occurs with the Geisser–Greenhouse

method, it would also occur for the Huynh–

Feldt estimation, or if you knew and used the

actual value of θ.

Another approach to repeated measures, called

“profile analysis,” uses Hotelling’s T2 statistic

and/or MANOVA on difference scores.

In fact, the only good use of a usually non-

informative MANOVA may be in a repeated-

measures analysis.
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Three types of questions are commonly asked

in a profile analysis:

Are the profiles parallel to each other? (the

Interaction Test)

Are the profiles coincident? (a Main Effect

Test)

And, are the profiles horizontal? (a Main Ef-

fect Test)

When done well, a profile analysis can give an

informative interpretation of repeated-measures

information with an associated graphical pre-

sentation.



Two possible issues with repeated measures
should be noted.

First, it is assumed that the responses from our
subjects are commensurable over the variables
measured.

If not, an artificial transformation could be
considered such as to z-scores, but by so do-
ing, the test for horizontal profiles is not mean-
ingful because the associated test statistic is
identically zero.

Second, the number of subjects versus the num-
ber of measurement times may prevent carry-
ing out a Hotelling T2 comparison in a profile
analysis (but not, say, a correction based on a
Huynh–Feldt estimated θ).

Generally, if there are more time points than
subjects, one of the degrees of freedom in the
F -distribution used for the T2 comparison is
negative, and thus, the test is meaningless.
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Repeated measurements obtained on the same
subjects generally require a different approach
than do singly occurring measurements.

As discussed above, there are various ways of
not taking advantage of the usual compound
symmetry assumption;

for example, carrying out the analyses of vari-
ance with Huynh–Feldt or Geisser–Greenhouse
corrections, or using alternative Hotelling T2

or MANOVA approaches.

The issues, however, go deeper than just these
types of split-plot experimental designs, and
the special circumstances that repeated mea-
sures offer are commonly just ignored.

Anyone analyzing repeated measures needs to
remember that the variance of the difference
between two means, say X̄ and Ȳ , is not the
same when X̄ and Ȳ are based on independent
samples.
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In particular, suppose X̄ is obtained for the

observations X1, . . . , XN , and Ȳ for Y1, . . . , YN .

When the samples are independent, the vari-

ance of the difference X̄ − Ȳ , S2
X̄−Ȳ , can be

estimated as S2
X̄

+ S2
Ȳ

, where S2
X̄
≡ S2

X/N ,

S2
Ȳ
≡ S2

Y /N , and S2
X and S2

Y are the sam-

ple variances for X1, . . . , XN and Y1, . . . , YN , re-

spectively.

In the repeated-measures context, the vari-

ance of X̄ − Ȳ can be estimated as S2
X̄

+ S2
Ȳ
−

2(SXY /N), where SXY is the sample covari-

ance between the observations X1, . . . , XN and

Y1, . . . , YN .
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Thus, we have a difference in the term, −2(SXY /N),

which in most instances will be a negative cor-

rection when the X and Y observations are

positively related.

In other words, the variance of the difference,

X̄ − Ȳ , will generally be less in the context of

repeated measures compared to independent

samples.

In some areas of neuroimaging, the repeated-

measures nature of the data is just ignored;

we have pixels (or voxels) that are spatially ar-

ranged (and subject to various types of spatial

autocorrelation) that move through time (and

subject again to various types of temporal au-

tocorrelation).
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In these frameworks where the repeated mea-

sures are both spatial and temporal, it is not

sufficient to just use the various multivariate

general linear model extensions that assume

all error terms are independent and identically

distributed

(as suggested by some best-selling fMRI hand-

books; for example, see Huettel, Song, & Mc-

Carthy, 2004, pp. 336–348).

Geographers have struggled with this type of

spatial and temporal modeling for decades, and

have documented the issues extensively
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A related repeated-measures topic is in the

time-series domain, where some variable is ob-

served temporally.

Substantial modeling efforts have involved the

Box–Jenkins approach of using ARIMA models

(autoregressive-integrated-moving-average).

A more subtle question in this context is to

assess the effects of an intervention on the

progress of such a time series.

In the case of single-subject designs, where a

subject serves as his or her own control, the

issue of evaluating interventions is central (see

Kazdin, 1982).
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A particularly elegant approach to this problem

has been developed by Edgington (see Edging-

ton & Onghena, 2007, Chapter 11: “N-of-1

Designs”), where intervention times are cho-

sen randomly.

The same logic of analysis is possible as in

a Fisherian (1971) approach to analyzing an

experiment where the various units have been

assigned at random to the conditions.
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Issues with Matching and Blocking (Redux):

One of the main decision points in construct-

ing an experimental design is whether to block

or match subjects, and then within blocks ran-

domly assign subjects to treatments.

Alternatively, subjects could be randomly as-

signed to conditions without blocking.

As discussed earlier, it is best to control for

initial differences beforehand.

Intact groups can’t be equated legitimately af-

ter the fact through methods such as analysis

of covariance or post-hoc matching.

But the question here is whether blocking makes

sense over the use of a completely randomized

design.
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This choice can be phrased more formally by

comparing the test statistics appropriate for a

two-independent or a two-dependent samples

t-test.

The principle derived from this specific com-

parison generalizes to more complicated de-

signs.



Suppose we have two equal-sized samples of

size N , X1, . . . , XN and Y1, . . . , YN .

When the two samples are independent, the

two-independent samples t-statistic has the form

X̄ − Ȳ√
(S2
X + S2

Y )/(N − 1)
,

where S2
X and S2

Y are the sample variances;

this statistic is compared to a t-distribution

with 2(N − 1) degrees of freedom.

When the samples are dependent and Xi and

Yi are repeat observations on the ith subject,

the paired t-statistic has the form

X̄ − Ȳ√
S2
D/(N − 1)

,
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where S2
D is the sample variance of the differ-

ence scores.

Here, the paired t-statistic is compared to a

t-distribution with N − 1 degrees of freedom.

We note the relation S2
D = S2

X + S2
Y − 2SXY ,

where SXY is the sample covariance between

X and Y .



In the initial design of an experiment, there

may be a choice:

match subjects and assign members within a

pair to the treatments, or just assign all sub-

jects randomly to the two treatments without

matching.

Generally, if the matching variable is not very

important in that the sample covariance is not

that large (and positive), to compensate for

the halving of the degrees of freedom in going

from 2(N−1) to (N−1), it only hurts to match.

To compensate for the loss of degrees of free-

dom and make the paired t-statistic sufficiently

larger than the independent sample t-statistic,

the variance of the differences, S2
D, in the de-

nominator of the paired t-statistic must be suf-

ficiently smaller compared to S2
X+S2

Y in the de-

nominator of the independent samples t-statistic.
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Unfortunately, unless one has some estimate

of the covariance of X and Y , the choice of

design must be based on a guess.

A dictum, however, may still be gleaned:

don’t block or match on variables that have

no possible (positive and relatively strong) re-

lation to the type of responses being measured.


