Algorithm AS 225: Minimizing Linear Inequality Constrained Mahalanobis Distances

Peter C. Wollan, Richard L. Dykstra

Stable URL: http://links.jstor.org/sici?sici=0035-9254%281987%2936%3A2%3C234%3AAA2MLI%3E2.0.CO%3B2-O

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Applied Statistics is published by Royal Statistical Society. Please contact the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/rss.html.

Applied Statistics
©1987 Royal Statistical Society

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office. For more information on JSTOR contact jstor-info@umich.edu.

©2002 JSTOR
Algorithm AS 225

Minimizing Linear Inequality Constrained Mahalanobis Distances

By Peter C. Wollan

Michigan Technological University, U.S.A.

and

Richard L. Dykstra†

University of Iowa, U.S.A.

[Received November 1985. Final revision December 1986]

Keywords: Mahalanobis Distance; Linear Inequality Constraints; Kuhn-Tucker Vectors; Iteration; Active Constraints

Language

Fortran 66

Description and Purpose

Least squares problems with affine equality constraints occur frequently in a variety of contexts, and efficient algorithms for their solution exist in several locations (such as Stirling

† Address for correspondence: Department of Statistics and Actuarial Science University of Iowa, Iowa City, IA 52242, U.S.A.

© 1987 Royal Statistical Society 0035–9254/87/36234 $2.00
(1981). When the equality constraints are replaced by inequality constraints, the problem takes on a very different character, especially when the number of constraints is large. This is primarily because it is difficult to identify the active constraints. Here we present a Fortran program for obtaining the solution to the problem.

\[
\text{Minimize } (g - x)^T S^{-1} (g - x),
\]

where \(g^{\times 1} \) and \(b^{\times 1} \) are specified vectors, \(S^{n \times n} \) is a given positive definite matrix and

\[
A^{k \times n} = \begin{bmatrix} a(1)^T \\ a(2)^T \\ \vdots \\ a(k)^T \end{bmatrix}
\]

denotes a matrix corresponding to \(k \) simultaneous affine constraints. The program implements an interactive procedure proposed in Dykstra (1983) which in this context proceeds by cyclically estimating Kuhn-Tucker vectors. The estimated Kuhn-Tucker vectors are then used to form a simpler, approximating problem which is easily solvable. The Kuhn-Tucker estimates are then updated and the process repeated. The procedure is guaranteed to converge correctly if a solution exists, usually in an efficient manner. The procedure is exceptionally simple and straightforward and easy to program. The constraint matrix need not be full rank, and \(k \) may exceed \(n \). Redundant constraints cause no problems, and in some cases may actually speed convergence.

The procedure simultaneously generates a sequence of estimated solutions \(x^{n \times 1}_m \) and a sequence of Kuhn-Tucker vectors \(u^{k \times 1}_m \) (where \(u^{m}_m(j) \) denotes the \(j \)th coordinate of \(u^{m}_m \) corresponding to the \(j \)th constraint \(a(j)^T x \leq b(j) \)). The procedure is initiated by setting \(u^0 = 0 \) and \(x_0 \equiv g \), and by defining \(m^i = m \mod k i f m = lk + i \) for integers \(l \geq 0 \) and \(1 \leq i \leq k \). To move from \((x^{m-1}_m, u^{m-1}_m) \) to \((x^m_m, u^m_m) \), the algorithm sets

\[
\tilde{y} = x^{m-1}_m + S a(m') u^{m-1}_{m-1}(m')/2,
\]

and then defines \((x^m_m, u^m_m) \) by

\[
u^{m}_m(j) = \begin{cases} u^{m-1}_{m-1}(j) \\ \max \{0,2(a(j)^T \tilde{y} - b(j))/(a(j)^T S a(j))\} \\ \max \{0,2(a(j)^T \tilde{y} - b(j))/(a(j)^T S a(j))\} \end{cases}, \quad j \neq m',
\]

\[
u^{m}_m(m') = \tilde{y} - S a(m') u^{m}_m(m')/2.
\]

The factor of 2 appears here because of the choice of squared Mahalanobis distance as the objective function. Even if the minimization problems are equivalent, different objective functions yield different values for the Kuhn-Tucker coefficients. In practice, one is usually interested only in whether or not the coefficient is zero. A non-zero value indicates that the corresponding constraint is active, while a zero value indicates that the constraint is inactive. In some sense, larger values indicate that the corresponding constraints are more important. The program terminates when \(x^{k}_{mk} \) and \(x^{(m+1)k} \) are sufficiently close in the usual \(l_{\infty} \) norm, in which case the program returns \(x^{(m+1)k} \) as its estimated solution (denoted by \(XHATin \) program output).

A closely related problem for which the algorithm may be used is

\[
\text{Minimize } (g - x)^T S^{-1} (g - x)
\]

\[
x; x = \sum_{d^{i}} d^{i}, a^{i} \geq 0 \text{ for all } i
\]

where \(d^{1 \times 1}, \ldots, d^{k \times 1} \) are a specified collection of vectors. To use the algorithm for this problem, set
\[A = \begin{bmatrix}
 d_1 S^{-1} \\
 d_2 S^{-1} \\
 \vdots \\
 d_k S^{-1}
\end{bmatrix} \]

in problem (1.1) and apply the algorithm. If \(x^* \) denotes the limiting value from the algorithm, \(q - x^* \) solves problem (1.2). If the \(\alpha \)'s are also desired, they are given by one-half the Kuhn-Tucker vector (which is \(XKT \) in the output).

Equality constraints are handled for forcing them to be active: the \(i \)th constraint is treated as either an equality or inequality constraint, depending on the value of the indicator variable \(IFLAG(1) \). If the problem is such that blocks of constraints can be handled simultaneously, greater economies are possible (see Dykstra and Robertson, 1982).

Restrictions

For simplicity, the program examines the input only enough to protect against dividing by zero. In particular, it does not verify the existence of a solution before proceeding. Thus the program will run even though there may not exist any vectors which are feasible (satisfy all constraints). However, since the procedure used must converge to the true solution (if it exists), failure to converge (\(IFAULT = 1 \) and \(SUPDIF \) relatively large) is evidence that there may not be any feasible vectors. The evidence for this increases if the program is repeated with a larger input value of \(ITMAX \), and the outputted value of \(SUPDIF \) is not decreased.

Structure

\texttt{SUBROUTINE LSTSQ(X, S, A, B, IFLAG, N, K, NWORK, ITMAX, EPS, EPS2, W, XHAT, XKT, ITER, SUPDIF, IFAULT)}

Formal parameters

\begin{itemize}
 \item \(X \) Real array(\(N \)) input: data vector
 \item \(S \) Real array(\(N,N \)) input: covariance matrix
 \item \(A \) Real array(\(K,N \)) input: constraint array
 \begin{itemize}
 \item The \(i \)th constraint is of the form \(\sum_{=1}^{N} A(J,I)^*X(J)[\leq \Rightarrow =]B(I), \leq \text{if IFLAG(I) = 0,} \)
 \item \(= \text{if IFLAG(I) = 1} \)
 \end{itemize}
 \item \(B \) Real array(\(K \)) input: constraint constants
 \item \(IFLAG \) Integer array(\(K \)) input: if \(IFLAG(I) = 0 \), the \(i \)th constraint is an inequality constraint. If \(IFLAG(I) = 1 \), it is an equality constraint
 \item \(N \) Integer input: length of the data vector
 \item \(K \) Integer input: number of constraints
 \item \(NWORK \) Integer input: length of workspace array: must be at least \(2*N*K + N + K \)
 \item \(ITMAX \) Integer input: upper bound for number of iterations to be attempted
 \item \(EPS \) Real input: accuracy parameter for the convergence criterion.
 \begin{itemize}
 \item The program terminates when \(SUPDIF \) is smaller than \(EPS \)
 \end{itemize}
 \item \(EPS2 \) Real input: if a real number is less than \(EPS2 \) in absolute value, it is considered to be zero
 \item \(W \) Real array(\(NWORK \)) workspace
 \item \(XHAT \) Real array(\(N \)) output: estimate vector
 \item \(XKT \) Real array(\(K \)) output: vector of Kuhn-Tucker coefficients
 \item \(ITER \) Integer output: number of iterations carried out.
\end{itemize}
\textbf{SUPDIF} Real output: greatest difference between estimates across a full cycle

\textbf{IFault} Integer output: error indicator

0: no error.
1: ITMAX exceeded.
2: invalid constants among N, K, $NWORK$, $ITMAX$, EPS, or $EPS2$
3: invalid constraint function. For some row $A(I)^*S^*A(I)' = 0$
4: insufficient workspace

\textbf{Applications}

Many problems can be phrased in the form of (1.1) and/or (1.2). For example, consider the linear model

$$Y = X\beta + \varepsilon$$

where Y^{mx1} is a vector of observations, X^{mxn} is a full rank design matrix, the components of ε are independent $n(0, \sigma^2)$ random variables, and the regression coefficients β_1, \ldots, β_n have linear inequality restrictions imposed upon them.

If the restrictions are that the β_i are non-negative, the problem of finding the maximum likelihood estimate of β is exactly of the form of (1.2) where the d_i's are the columns of X, g is the observed vector y, and S is the identity matrix. The minimizing α is of course the desired maximum likelihood estimate of β.

However, since the projection onto a convex set contained within a subspace can be accomplished by an iterated projection, the above problem can also be phrased as problem (1.1) where g is the unrestricted MLE of β, $S^{-1} = X'X$, and $A\beta \leq b$ denotes the inequality constraints on the regression coefficients. Since this problem is phrased in a lower dimensional space, this is usually preferable.

As another example, several authors have considered the problem of finding at least squares fit to a set of points subject to the fitted points being concave (or convex), e.g., Hildreth (1954). This problem can be phrased in the form of (1.1) by taking the ith row of A to have 1, -2, and 1 in the ith, $(i + 1)$th and $(i + 2)$th positions and zero everywhere else, and setting b equal to zero.

Another important application concerns maximum likelihood estimation problems with ordered parameters. Problems of this nature can often be solved by linearly restricted least squares projections for a wide variety of different families of distributions. For example, ordered parameter MLE's for binomial, Poisson, multinomial, gamma, geometric and other families all fall into this category (see Barlow, Bartholomew, Bremner and Brunk (1972)). Since these problems can be solved by least squares projections, this algorithm is applicable for obtaining the MLE's.

\textbf{Time and Accuracy}

Convergence is generally quite fast. For the problem of projecting random data, with a fixed non-diagonal covariance matrix, onto the linear-order isotonic cone in R^{10}, convergence to within $\pm 10^{-5}$ was usually obtained within 75 iterations, using no more than 2 seconds of CPU time on a PRIME 850 computer. However, the convergence rate depends on the eigenvalues of the covariance matrix, the configuration of the data, the covariance eigenvectors and the constraint vectors.

Intuitively, the program adjusts coordinates of XHAT to satisfy each constraint in turn. In some situations, convergence may be speeded up by adding redundant constraints. For example, suppose the constraints are $x_1 - x_2 \leq 0$, $x_2 - x_3 \leq 0$, and $x_3 - x_4 \leq 0$, $S^{-1} = \text{diag}(w_1, w_2, w_3, w_4)$ where w_1 and w_4 are large and w_2 and w_3 are small, and $g_1 \geq g_2 \geq g_3 \geq g_4$. Then the solution will have all coordinates equal to a weighted average of
the g_i's. The algorithm will proceed by successive weighted averagings between pairs of coordinates. However, largely because of the unequal weights, it may take a long time until the solution is reached. By adding the redundant constraint $x_1 - x_4 \leq 0$, convergence is much faster. It is much easier to identify redundant constraints which may be helpful when dealing with order constraints than when dealing with general linear inequalities. We know of no systematic method for adding additional redundant constraints to improve convergence, however.

Accuracy is determined by the variable EPS: the program terminates when the estimate under each constraint changes by less than EPS, in the usual l_2 norm. If greater accuracy is needed than can be obtained with single precision arithmetic, the program can readily be converted to double precision by including a type statement of the form "IMP\textsc{licit Double Precision A-H, P-Z}", replacing the function ABS with DABS, and replacing the constants in the DATA statement.

Acknowledgement

We would like to thank the editor and referee for their helpful comments. This work was partially supported by ONR Contract N00014-83-K-0249.

References


```fortran
SUBROUTINE LSTSQ(X, S, A, B, IFLAG, N, K, NWORK, ITMAX, EPS, EPS2,
* W, XHAT, XKT, ITER, SUPDIF, IFAULT)
DIMENSION X(N), S(N, N), A(K, N), B(K), IFLAG(K), W(NWORK),
* XHAT(N), XKT(K)

C ALGORITHM A5225 APPL. STATIST. (1987) VOL. 36, NO. 2
C COMPUTES THE LEAST-SQUARES PROJECTION OF X ONTO
C THE INTERSECTION OF K SIMULTANEOUS AFFINE CONSTRAINTS,
C USING THE MAHALANOBIS DISTANCE DETERMINED BY S.
C THE ITH CONSTRAINT IS OF THE FORM
C SUM OVER J OF A(I,J)*X(J) (.LE., .EQ.) B(I)
C --.LE. IF IFLAG(I) .EQ. 0
C --.EQ. IF IFLAG(I) .EQ. 1
C
C DATA ZERO, TWO /0.0E0, 2.0E0/
C
C IFAULT = 0
NK = N * K
NK2 = NK + NK
NK2K = NK2 + K

C CHECK INPUTS.
C IF (N .LE. 0 .OR. K .LE. 0 .OR. ITMAX .LE. 0 .OR. EPS .LE.
* ZERO .OR. NWORK .LE. 0 .OR. EPS2 .LE. ZERO) GOTO 300
IF (NWORK .LT. NK2K + N) GOTO 320
DO 10 I = 1, K
IF (IFLAG(I) .EQ. 0 .OR. IFLAG(I) .EQ. 1) GOTO 10
GOTO 300
10 CONTINUE
```
STATISTICAL ALGORITHMS

C INITIALLIZE ARRAYS, AND COMPUTE
C MATRIX PRODUCTS A*S AND DIAG(A*S*A').
C WORKSPACE STRUCTURE IS AS FOLLOWS:
C W(I) - W(N*K): ARRAY OF INCREMENT VECTORS. ITH INC VECTOR
C IS (X(I)/N)*S*A(I,.).
C W(NK+1) - W(NK*K+2): MATRIX A*S.
C W(NK2+1) - W(NK2+K): VECTOR DIAG(A*S*A').
C W(NK2K+1) - W(NK2K+N): PREVIOUS XHAT VECTOR, TO CHECK FOR CONV.
C
DO 40 I = 1, K
 DO 30 J = 1, N
 INDEX = NK + (J - 1) * K + I
 W(INDEX) = ZERO
 DO 20 L = 1, N
30 CONTINUE
40 CONTINUE
 DO 60 I = 1, K
 INDEX = NK2 + I
 W(INDEX) = ZERO
 DO 50 J = 1, N
 IND2 = NK + (J - 1) * K + I
50 CONTINUE
 IF (ABS(W(INDEX)) .LE. EPS2) GOTO 310
60 CONTINUE
 DO 80 J = 1, N
 INDEX = NK2K + J
 W(INDEX) = X(J)
 XHAT(J) = X(J)
 DO 70 I = 1, K
 INDEX = (I - 1) * N + J
 W(INDEX) = ZERO
70 CONTINUE
80 CONTINUE
ITER = 0

C THE ITERATION LOOP: LINES 100-200.
C
100 ITER = ITER + 1
 SUPDIF = ZERO
 DC 200 I = 1, K
C
 C REMOVE OLD INCREMENT VECTOR:
 C
 DO 110 J = 1, N
 INDEX = (I - 1) * N + J
 XHAT(J) = XHAT(J) + W(INDEX)
110 CONTINUE

C EVALUATE ITH CONSTRAINT:
C
 SUM = ZERO
 DO 120 J = 1, N
 120 SUM = SUM + A(I, J) * XHAT(J)
 SUM = SUM - B(I)
 IF (IFLAG(I) .EQ. 0 .AND. SUM .LE. ZERO) GOTO 140
C
 C COMPUTE NEW INCREMENT VECTOR THAT FORCES EQUALITY IN ITH CONST.
 C
 INDEX = NK2 + I
 TEMP = SUM / W(INDEX)
 DO 130 J = 1, N
 IND1 = (I - 1) * N + J
 IND2 = NK + (J - 1) * K + I
 W(IND1) = W(IND2) * TEMP
 XHAT(J) = XHAT(J) - W(IND1)
130 CONTINUE
 GOTO 160
C
 IF CONSTRAINT WAS SATISFIED, SET INCREMENT TO ZERO:
DO 150 J = 1, N
INDEX = (I - 1) * N + J
W(INDEX) = ZERO
150 CONTINUE

C
C FIND LARGEST CHANGE, AND CHECK FOR CONVERGENCE:
C
DO 170 J = 1, N
INDEX = NK2K + J
ABDIF = ABS(XHAT(J) - W(INDEX))
IF (SUPDIF .LT. ABDIF) SUPDIF = ABDIF
170 CONTINUE
DO 210 J = 1, N
INDEX = NK2K + J
W(INDEX) = XHAT(J)
210 CONTINUE
IF (ITER .LT. ITMAX) GOTO 400
DO 210 J = 1, N
INDEX = NK2K + J
W(INDEX) = XHAT(J)
210 CONTINUE
IF (ITER .LT. ITMAX) GOTO 100
IFault = 1
RETURN
300 IFault = 2
RETURN
310 IFault = 3
RETURN
320 IFault = 4
RETURN

C
C COMPUTE KUHN-TUCKER COEFFICIENTS AND RETURN.
C
DO 430 I = 1, K
C
FIND A NON-ZERO DENOMINATOR:

DO 410 J = 1, N
INDEX = NK + (J - 1) * K + I
IF (ABS(W(INDEX)) .GT. EPS2) GOTO 420
410 CONTINUE
IND2 = (I - 1) * N + J
XTI = TWO * W(IND2) / W(INDEX)
430 CONTINUE
RETURN
END