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Abstract. Edwin Diday, some two decades ago, was among the first few individuals
to recognize the importance of the (anti-)Robinson form for representing a proxim-
ity matrix, and was the leader in suggesting how such matrices might be depicted
graphically (as pyramids). We characterize the notions of an anti-Robinson (AR) and
strongly anti-Robinson (SAR) matrix, and provide open-source M-files within a MAT-
LAB environment to effect additive decompositions of a given proximity matrix into
sums of AR (or SAR) matrices. We briefly introduce how the AR (or SAR) rank of a
matrix might be specified.

1 Introduction

Various methods have been developed in the classification literature for rep-
resenting the structure that may be present in a symmetric proximity matrix.
The motivating bases for these strategies have been diverse, and include
the reliance on spatial analogues (e.g., in multidimensional scaling), graph-
theoretic concepts (e.g., in hierarchical clustering and the construction of
additive trees), and order-constrained approximation matrices (e.g., matri-
ces that satisfy the set of (anti-)Robinson (AR) order restrictions, character-
ized by a pattern of entries within each row and column never decreasing
when moving away from the main diagonal in any direction; for historical
precedents, see Robinson (1951)). It is within this last category of approxi-
mating a given proximity matrix by another that is order-constrained (and
where, for convenience, proximity is now assumed keyed as a dissimilarity,
so smaller values reflect more similar objects) in which Diday’s contributions
loam large. In the early 1980’s and culminating in Diday (1986), he intro-
duced the field to how (anti-)Robinson matrices may generally be represented
through what are called pyramidal indices and their associated graphical dis-
play, or more broadly, to the relevance of the (graph-theoretic) literature on
object seriation and its relation to the notion of an (anti-)Robinson form.
We briefly review in this short paper a few of the advances in the last two
decades, emphasizing, in particular, how sums of AR matrices might be iden-
tified and fitted through the minimization of a least-squares loss criterion.
For a very comprehensive and current review of the whole area of hierar-
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chical representations and their various extensions, the reader is referred to
Barthélemy, Brucker, and Osswald (2004).

2 Some definitions

Given an arbitrary symmetric n×n matrix, A = {aij}, where the main diag-
onal entries are considered irrelevant and assumed to be zero (i.e., aii = 0
for 1 ≤ i ≤ n), A is said to have an anti-Robinson (AR) form if after some
reordering of the rows and columns of A, the entries within each row and
column have a distinctive pattern: moving away from the zero main diagonal
entry within any row or any column, the entries never decrease. The entries
in any AR matrix A can be reconstructed exactly through a collection of M
subsets of the original object set S = {O1, . . . ,On}, denoted by S1, . . . , SM ,
and where M is determined by the particular pattern of tied entries, if any,
in A. These M subsets have the following characteristics:

(i) each Sm, 1 ≤m ≤ M , consists of a sequence of (two or more) consecu-
tive integers so that M ≤ n(n−1)/2. (This bound holds because the number
of different subsets having consecutive integers for any given fixed ordering
is n(n − 1)/2, and will be achieved if all the entries in the AR matrix A are
distinct).

(ii) each Sm, 1 ≤ m ≤ M , has a diameter, denoted by d(Sm), so that for
all object pairs within Sm, the corresponding entries in A are less than or
equal to the diameter. The subsets, S1, . . . , SM , can be assumed ordered as
d(S1) ≤ d(S2) ≤ · · · ≤ d(SM), and if Sm ⊆ Sm′ , d(Sm) ≤ d(Sm′).

(iii) each entry in A can be reconstructed from d(S1), . . . , d(SM), i.e., for
1 ≤ i, j ≤ n,

aij = min
1≤m≤M

{d(Sm) | Oi,Oj ∈ Sm},

so that the minimum diameter for subsets containing an object pair Oi,Oj ∈
S is equal to aij . Given A, the collection of subsets S1, . . . , SM and their di-
ameters can be identified by inspection through the use of an increasing
threshold that starts from the smallest entry in A, and observing which sub-
sets containing contiguous objects emerge from this process. The substan-
tive interpretation of what A is depicting reduces to explaining why those
subsets with the smallest diameters are so homogenous.

If the matrix A has a somewhat more restrictive form than just being AR,
and is also strongly anti-Robinson (SAR), a convenient graphical representa-
tion can be given to the collection of AR reconstructive subsets S1, . . . , SM
and their diameters, and how they can serve to retrieve A. Specifically, A is
said to be strongly anti-Robinson (SAR) if (considering the above-diagonal en-
tries of A) whenever two entries in adjacent columns are equal (aij = ai(j+1)),
those in the same two adjacent columns in the previous row are also equal
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(a(i−1)j = a(i−1)(j+1) for 1 ≤ i − 1 < j ≤ n − 1); also, whenever two en-
tries in adjacent rows are equal (aij = a(i+1)j ), those in the same two adja-
cent rows in the succeeding column are also equal (ai(j+1) = a(i+1)(j+1) for
2 ≤ i+ 1 < j ≤ n− 1).

The reconstruction of an SAR matrix through the collection of consecu-
tively defined object subsets, S1, . . . , SM , and their diameters, and how these
serve to reconstruct A can be modeled graphically (see Figure 1). Internal
nodes would be at a height equal to the diameter of the respective subset;
the consecutive objects forming that subset are identifiable by downward
paths from the internal nodes to the terminal nodes corresponding to the
objects in S = {O1, . . . ,On}. An entry aij in A can be reconstructed as the
minimum node height of a subset for which a path can be constructed from
Oi up to that internal node and then back down to Oj .

As a few final introductory historical notes, there is now a rather ex-
tensive literature on graphically representing a matrix having an AR or SAR
form. The reader interested in pursuing some of the relevant literature might
begin with the earlier cited reference by Diday (1986) and his introduction
to graphically representing an AR matrix by a ‘pyramid’, and then continue
with the review by Durand and Fichet (1988), who point out the necessity of
strengthening the AR condition to one that is SAR if a consistent graphical
(pyramidal) representation is to be possible with no unresolvable graphical
anomalies. For further discussion and development of some of these repre-
sentations issues, the reader is referred to Diatta and Fichet (1998), Critchley
(1994), Critchley and Fichet (1994), and Mirkin (1996, Chapter 7).

2.1 An illustrative numerical example

The proximity matrix given in Table 1 was published by The New York Times
(July 2, 2005), and contains the percentages of non-unanimous cases in which
the U.S. Supreme Court Justices disagreed from the 1994/95 term through
2003/04 (known as the Rehnquist Court). The (upper-triangular portion of
the) dissimilarity matrix is given in the same row and column order as the
Times data set, with the justices ordered from “liberal” to “conservative”:

1: John Paul Stevens (St)
2: Stephen G. Breyer (Br)
3: Ruth Bader Ginsberg (Gi)
4: David Souter (So)
5: Sandra Day O’Connor (Oc)
6: Anthony M. Kennedy (Ke)
7: William H. Rehnquist (Re)
8: Antonin Scalia (Sc)
9: Clarence Thomas (Th)

The lower-triangular portion of Table 1 is a best-fitting (least-squares) SAR
matrix obtained with the MATLAB M-file sarobfnd.m mentioned in the next
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section. The variance-accounted-for is 98.62%, so there is little residual vari-
ability left. A graphical representation is given in Figure 1; the ‘pyramidal’
structure would be more apparent if the vertical lines were tilted slightly
inward toward the internal nodes.

St Br Gi So Oc Ke Re Sc Th
1 St .00 .38 .34 .37 .67 .64 .75 .86 .85
2 Br .36 .00 .28 .29 .45 .53 .57 .75 .76
3 Gi .36 .28 .00 .22 .53 .51 .57 .72 .74
4 So .37 .29 .22 .00 .45 .50 .56 .69 .71
5 Oc .66 .49 .49 .45 .00 .33 .29 .46 .46
6 Ke .70 .55 .55 .53 .31 .00 .23 .42 .41
7 Re .70 .55 .55 .53 .31 .23 .00 .34 .32
8 Sc .86 .74 .74 .70 .46 .42 .33 .00 .21
9 Th .86 .74 .74 .70 .46 .42 .33 .21 .00

Table 1. Dissimilarities among the nine Supreme Court justices above the diagonal;
best-fitting SAR values below the diagonal.

3 Computational procedures within MATLAB

The recent monograph by Hubert, Arabie, and Meulman (2006) provides a
collection of open-source M-files (i.e., the code is freely available) within a
MATLAB environment to effect a variety of least-squares structural repre-
sentations for a proximity matrix. Among these are strategies to search for
good-fitting AR and SAR forms, including additive decompositions of up to
two such structures for a single given proximity matrix. We do not give the
algorithmic details here on how these M-files are built, and instead, refer the
reader to the Hubert et. al (2006) monograph. We have collected all the rele-
vant M-files together at http://cda.psych.uiuc.edu/diday_mfiles. The
three M-files, arobfnd.m, biarobfnd.m, triarobfnd.m, fit respectively, one,
two, and three AR matrices to a given input proximity matrix; the three M-
files, sarobfnd.m, bisarobfnd.m, trisarobfnd.m, are for the strengthened
SAR forms. The two files, triarobfnd.m and trisarobfnd.m, are unique to
this site, and should provide a programming template to extend easily, when
needed, the additive decomposition to four or more matrices.

We give the help header for the representative file triarobfnd.m be-
low, along with an application to a randomly constructed 10× 10 proximity
matrix (obtained from the contributed M-file randprox.m). As can be seen,
the (random) matrix is perfectly reconstructed by the three AR matrices (a
variance-accounted-for of 1.0 is achieved). For example, the (4,6) entry in
prox of .7948 is reconstructed based on the given output permutations,
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Fig. 1. A ‘pyramidal’ representation for the SAR matrix given in Table 1 having VAF
of 98.62%
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outpermone, outpermtwo, and outpermthree; explicitly, we use the (4,10)
entry in targone (.8290), the (8,9) entry in targtwo (−.0515), and the (3,9)
entry in targthree (.0173): .7948 = .8290 + (−.0515) + (.0173).

>> help triarobfnd

TRIAROBFND finds and fits the sum of three anti-Robinson
matrices using iterative projection to a symmetric
proximity matrix in the $L_{2}$-norm based on permutations
identified through the use of iterative quadratic assignment.

syntax: [find,vaf,targone,targtwo,targthree,outpermone, ...
outpermtwo,outpermthree] = triarobfnd(prox,inperm,kblock)

PROX is the input proximity matrix ($n \times n$ with a zero
main diagonal and a dissimilarity interpretation);
INPERM is a given starting permutation of the first $n$
integers; FIND is the least-squares optimal matrix (with
variance-accounted-for of VAF to PROX and is the sum of the
three anti-Robinson matrices TARGONE, TARGTWO, and TARGTHREE
based on the three row and column object orderings given by
the ending permutations OUTPERMONE, OUTPERMTWO, and
OUTPERMTHREE. KBLOCK defines the block size in the use of
the iterative quadratic assignment routine.

>> prox = randprox(10)

prox =

0 0.6979 0.3784 0.8600 0.8537 0.5936 0.4966 0.8998 0.8216 0.6449
0.6979 0 0.8180 0.6602 0.3420 0.2897 0.3412 0.5341 0.7271 0.3093
0.3784 0.8180 0 0.8385 0.5681 0.3704 0.7027 0.5466 0.4449 0.6946
0.8600 0.6602 0.8385 0 0.6213 0.7948 0.9568 0.5226 0.8801 0.1730
0.8537 0.3420 0.5681 0.6213 0 0.9797 0.2714 0.2523 0.8757 0.7373
0.5936 0.2897 0.3704 0.7948 0.9797 0 0.1365 0.0118 0.8939 0.1991
0.4966 0.3412 0.7027 0.9568 0.2714 0.1365 0 0.2987 0.6614 0.2844
0.8998 0.5341 0.5466 0.5226 0.2523 0.0118 0.2987 0 0.4692 0.0648
0.8216 0.7271 0.4449 0.8801 0.8757 0.8939 0.6614 0.4692 0 0.9883
0.6449 0.3093 0.6946 0.1730 0.7373 0.1991 0.2844 0.0648 0.9883 0

>> [find,vaf,targone,targtwo,targthree, ...
outpermone,outpermtwo,outpermthree] = ...
triarobfnd(prox,randperm(10),2)

find =

0 0.6979 0.3784 0.8600 0.8536 0.5936 0.4966 0.8998 0.8216 0.6449
0.6979 0 0.8180 0.6602 0.3420 0.2897 0.3412 0.5341 0.7271 0.3093
0.3784 0.8180 0 0.8385 0.5681 0.3704 0.7027 0.5466 0.4449 0.6946
0.8600 0.6602 0.8385 0 0.6213 0.7948 0.9568 0.5226 0.8801 0.1730
0.8536 0.3420 0.5681 0.6213 0 0.9797 0.2714 0.2523 0.8757 0.7373
0.5936 0.2897 0.3704 0.7948 0.9797 0 0.1365 0.0118 0.8939 0.1991
0.4966 0.3412 0.7027 0.9568 0.2714 0.1365 0 0.2987 0.6614 0.2844
0.8998 0.5341 0.5466 0.5226 0.2523 0.0118 0.2987 0 0.4692 0.0648
0.8216 0.7271 0.4449 0.8801 0.8757 0.8939 0.6614 0.4692 0 0.9883



(Anti-) Robinson Representations 7

0.6449 0.3093 0.6946 0.1730 0.7373 0.1991 0.2844 0.0648 0.9883 0

vaf =

1.0000

targone =

0 0.6591 0.6591 0.6601 0.6601 0.7509 0.7754 0.7755 0.8757 0.8801
0.6591 0 0.3569 0.5849 0.6601 0.7509 0.7509 0.7755 0.8290 0.8290
0.6591 0.3569 0 0.3704 0.6601 0.6720 0.6851 0.7755 0.7840 0.8290
0.6601 0.5849 0.3704 0 0.1030 0.2063 0.2661 0.3883 0.7840 0.8290
0.6601 0.6601 0.6601 0.1030 0 0.2063 0.2418 0.3883 0.4269 0.8290
0.7509 0.7509 0.6720 0.2063 0.2063 0 0.0283 0.3290 0.3290 0.6651
0.7754 0.7509 0.6851 0.2661 0.2418 0.0283 0 0.2702 0.3290 0.5290
0.7755 0.7755 0.7755 0.3883 0.3883 0.3290 0.2702 0 0.2963 0.5263
0.8757 0.8290 0.7840 0.7840 0.4269 0.3290 0.3290 0.2963 0 0.5263
0.8801 0.8290 0.8290 0.8290 0.8290 0.6651 0.5290 0.5263 0.5263 0

targtwo =

0 -0.1489 0.0312 0.0312 0.0312 0.0492 0.0578 0.1813 0.2296 0.4148
-0.1489 0 -0.1392 -0.0471 -0.0333 0.0492 0.0578 0.0578 0.1344 0.1344
0.0312 -0.1392 0 -0.0537 -0.0333 0.0281 0.0376 0.0376 0.0376 0.0620
0.0312 -0.0471 -0.0537 0 -0.2446 0.0281 0.0376 0.0376 0.0376 0.0620
0.0312 -0.0333 -0.0333 -0.2446 0 -0.2488 -0.1600 0.0376 0.0376 0.0620
0.0492 0.0492 0.0281 0.0281 -0.2488 0 -0.1600 -0.0080 0.0160 0.0160
0.0578 0.0578 0.0376 0.0376 -0.1600 -0.1600 0 -0.3058 -0.0080 0
0.1813 0.0578 0.0376 0.0376 0.0376 -0.0080 -0.3058 0 -0.0515 -0.0426
0.2296 0.1344 0.0376 0.0376 0.0376 0.0160 -0.0080 -0.0515 0 -0.3495
0.4148 0.1344 0.0620 0.0620 0.0620 0.0160 0 -0.0426 -0.3495 0

targthree =

0 -0.1217 -0.0376 -0.0312 0.0346 0.0346 0.1510 0.1958 0.1962 0.1962
-0.1217 0 -0.1345 -0.1345 0.0346 0.0346 0.0364 0.1113 0.1113 0.1675
-0.0376 -0.1345 0 -0.1345 -0.0065 -0.0065 -0.0065 -0.0065 0.0173 0.0964
-0.0312 -0.1345 -0.1345 0 -0.2651 -0.0065 -0.0065 -0.0065 0.0145 0.0145
0.0346 0.0346 -0.0065 -0.2651 0 -0.0065 -0.0065 -0.0065 0.0080 0.0145
0.0346 0.0346 -0.0065 -0.0065 -0.0065 0 -0.0917 -0.0243 -0.0243 0
0.1510 0.0364 -0.0065 0.0065 -0.0065 -0.0917 0 -0.1680 -0.0243 -0.0229
0.1958 0.1113 -0.0065 -0.0065 -0.0065 -0.0243 -0.1680 0 0.0289 -0.0239
0.1962 0.1113 0.0173 0.0145 0.0080 -0.0243 -0.0243 -0.0289 0 -0.1362
0.1962 0.1675 0.0964 0.0145 0.0145 0 -0.0229 -0.0239 -0.1362 0

outpermone =

9 1 3 6 7 8 10 2 5 4

outpermtwo =

5 7 1 2 9 3 8 6 4 10

outpermthree =

9 8 4 5 3 7 10 1 6 2
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4 The concept of minimum AR (or SAR) matrix rank

Based on the type of M-file (triarobfnd.m) illustrated in the previous sec-
tion, a rather natural question arises as to the number of AR (or SAR) compo-
nents necessary to exhaust perfectly any given proximity matrix. The mini-
mum such number will be referred to as the AR (or SAR) rank of a symmetric
proximity matrix. As we saw for the random 10 × 10 matrix in the example
of the last section, we usually can do quite well with many fewer compo-
nents than the order of the matrix. Although we might expect this to be true
for a data matrix that is well-structured (and where two or three AR or SAR
components are all that is needed to effectively exhaust the given proxim-
ity matrix), the same also appears to hold for merely randomly structured
matrices.

To make this last point even more clear, a small Monte Carlo analysis
was carried out in which 1000 random proximity matrices (with entries uni-
form on (0,1)), of sizes 10, 20, 30, 40, and 50, were approximated by sums of
AR matrices to the point where at least a VAF of 99% was achieved. The fre-
quency results (out of 1000 such randomly generated matrices) are tabulated
below:

Number AR Components Needed
Matrix Size 2 3 4 5 6 7 8 9 10

10 37 959 4
20 316 684
30 994 6
40 205 795
50 995 5

Figure 2 illustrates, by means of box-and-whisker plots, the incremental gain
in VAF as a function of the number of fitted AR components.
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Fig. 2. Incremental VAF Gains for Differing Numbers of AR Components
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