[Master Index] [Index for PublicToolbox/regutools]

heb_new

(PublicToolbox/regutools/heb_new.m in BrainStorm 2.0 (Alpha))


Function Synopsis

lambda = heb_new(lambda_0,alpha,s,beta,omega)

Help Text

HEB_NEW Newton iteration with Hebden model (utility routine for LSQI).

 lambda = heb_new(lambda_0,alpha,s,beta,omega)

 Uses Newton iteration with a Hebden (rational) model to find the
 solution lambda to the secular equation
    || L (x_lambda - x_0) || = alpha ,
 where x_lambda is the solution defined by Tikhonov regularization.

 The initial guess is lambda_0.

 The norm || L (x_lambda - x_0) || is computed via s, beta and omega.
 Here, s holds either the singular values of A, if L = I, or the
 c,s-pairs of the GSVD of (A,L), if L ~= I.  Moreover, beta = U'*b
 and omega is either V'*x_0 or the first p elements of inv(X)*x_0.

Cross-Reference Information

This function is called by

Listing of function C:\BrainStorm_2001\PublicToolbox\regutools\heb_new.m

function lambda = heb_new(lambda_0,alpha,s,beta,omega)
%HEB_NEW Newton iteration with Hebden model (utility routine for LSQI).
%
% lambda = heb_new(lambda_0,alpha,s,beta,omega)
%
% Uses Newton iteration with a Hebden (rational) model to find the
% solution lambda to the secular equation
%    || L (x_lambda - x_0) || = alpha ,
% where x_lambda is the solution defined by Tikhonov regularization.
%
% The initial guess is lambda_0.
%
% The norm || L (x_lambda - x_0) || is computed via s, beta and omega.
% Here, s holds either the singular values of A, if L = I, or the
% c,s-pairs of the GSVD of (A,L), if L ~= I.  Moreover, beta = U'*b
% and omega is either V'*x_0 or the first p elements of inv(X)*x_0.

% Reference: T. F. Chan, J. Olkin & D. W. Cooley, "Solving quadratically
% constrained least squares using block box unconstrained solvers",
% BIT 32 (1992), 481-495.
% Extension to the case x_0 ~= 0 by Per Chr. Hansen, UNI-C, 11/20/91.

% Per Christian Hansen, UNI-C, 02/07/92.

% Set defaults.
thr = eps;     % Relative stopping criterion.
it_max = 50;   % Max number of iterations.

% Initialization.
if (lambda_0 < 0)
  error('Initial guess lambda_0 must be nonnegative')
end
[p,ps] = size(s);
if (ps==2), mu = s(:,2); s = s(:,1)./s(:,2); end
s2 = s.^2;

% Iterate.
lambda = lambda_0^2; step = 1; it = 0;
while (abs(step) > thr*lambda & it < it_max), it = it+1;
  e = s./(s2 + lambda); f = 2.*e;
  if (ps==1)
    Lx = e.*beta - f.*omega;
  else
    Lx = e.*beta - f.*mu.*omega;
  end
  norm_Lx = norm(Lx);
  Lv = Lx./(s2 + lambda);
  step = (norm_Lx - alpha)*norm_Lx^2/((Lv'*Lx)*alpha);
  lambda = lambda + step;
end

% Terminate with an error if too many iterations.
if (abs(step) > thr*lambda), error('Max. number of iterations reached'), end

lambda = sqrt(lambda);

Produced by color_mat2html, a customized BrainStorm 2.0 (Alpha) version of mat2html on Tue Oct 12 12:05:14 2004
Cross-Directory links are: ON