[Master Index]
[Index for PublicToolbox/regutools]
lsqi
(PublicToolbox/regutools/lsqi.m in BrainStorm 2.0 (Alpha))
Function Synopsis
[x_alpha,lambda] = lsqi(U,s,V,b,alpha,x_0)
Help Text
LSQI Least squares minimizaiton with a quadratic inequality constraint.
[x_alpha,lambda] = lsqi(U,s,V,b,alpha,x_0)
[x_alpha,lambda] = lsqi(U,sm,X,b,alpha,x_0) , sm = [sigma,mu]
Least squares minimization with a quadratic inequality constraint:
min || A x - b || subject to || x - x_0 || <= alpha
min || A x - b || subject to || L (x - x_0) || <= alpha
where x_0 is an initial guess of the solution, and alpha is a
positive constant. Requires either the compact SVD of A saved as
U, s, and V, or part of the GSVD of (A,L) saved as U, sm, and X.
The regularization parameter lambda is also returned.
If alpha is a vector, then x_alpha is a matrix such that
x_alpha = [ x_alpha(1), x_alpha(2), ... ] .
If x_0 is not specified, x_0 = 0 is used.
Cross-Reference Information
This function calls
- heb_new C:\BrainStorm_2001\PublicToolbox\regutools\heb_new.m
Listing of function C:\BrainStorm_2001\PublicToolbox\regutools\lsqi.m
function [x_alpha,lambda] = lsqi(U,s,V,b,alpha,x_0)
%LSQI Least squares minimizaiton with a quadratic inequality constraint.
%
% [x_alpha,lambda] = lsqi(U,s,V,b,alpha,x_0)
% [x_alpha,lambda] = lsqi(U,sm,X,b,alpha,x_0) , sm = [sigma,mu]
%
% Least squares minimization with a quadratic inequality constraint:
% min || A x - b || subject to || x - x_0 || <= alpha
% min || A x - b || subject to || L (x - x_0) || <= alpha
% where x_0 is an initial guess of the solution, and alpha is a
% positive constant. Requires either the compact SVD of A saved as
% U, s, and V, or part of the GSVD of (A,L) saved as U, sm, and X.
% The regularization parameter lambda is also returned.
%
% If alpha is a vector, then x_alpha is a matrix such that
% x_alpha = [ x_alpha(1), x_alpha(2), ... ] .
%
% If x_0 is not specified, x_0 = 0 is used.
% Reference: T. F. Chan, J. Olkin & D. W. Cooley, "Solving quadratically
% constrained least squares using block box unconstrained solvers",
% BIT 32 (1992), 481-495.
% Extension to the case x_0 ~= 0 by Per Chr. Hansen, UNI-C, 11/20/91.
% Key point: the initial lambda is almost unaffected by x_0 because
% || x_unreg || >> || x_0 ||.
% Per Christian Hansen, UNI-C, 11/22/91.
% Initialization.
[n,p] = size(V); [p,ps] = size(s);
if (min(alpha)<0)
error('Illegal inequality constraint alpha')
end
if (nargin==5), x_0 = zeros(n,1); end
la = length(alpha);
x_k = zeros(n,la); lambda = zeros(1,la);
snz = length(find(s(:,1)>0)); beta = U'*b;
if (ps == 1)
xi = beta(1:snz)./s(1:snz); omega = V'*x_0; s2 = s.^2;
x_unreg = V(:,1:snz)*xi; norm_x_unreg = norm(x_unreg - x_0);
for k=1:la
if (norm_x_unreg <= alpha(k))
x_alpha(:,k) = x_unreg; lambda(k) = 0;
else
lambda_0 = s(snz)*sqrt(norm_x_unreg/alpha(k) - 1);
lambda(k) = heb_new(lambda_0,alpha(k),s,beta,omega);
e = s./(s2 + lambda(k)^2); f = s.*e;
x_alpha(:,k) = V(:,1:p)*(e.*beta + (1-f).*omega);
end
end
else
x_u = V(:,p+1:n)*beta(p+1:n); ps1 = p-snz+1;
xi = beta(ps1:p)./s(ps1:p,1); gamma = s(:,1)./s(:,2);
omega = V\x_0; omega = omega(1:p);
x_unreg = V(:,ps1:p)*xi + x_u;
norm_Lx_unreg = norm(s(ps1:p,2).*(xi - omega(ps1:p)));
for k=1:la
if (norm_Lx_unreg <= alpha(k))
x_alpha(:,k) = x_unreg; lambda(k) = 0;
else
lambda_0 = (s(ps1,1)/s(ps1,2))*sqrt(norm_Lx_unreg/alpha(k) - 1);
lambda(k) = heb_new(lambda_0,alpha(k),s,beta(1:p),omega);
e = gamma./(gamma.^2 + lambda(k)^2); f = gamma.*e;
x_alpha(:,k) = V(:,1:p)*(e.*beta(1:p)./s(:,2) + ...
(1-f).*s(:,2).*omega) + x_u;
end
end
end
Produced by color_mat2html, a customized BrainStorm 2.0 (Alpha) version of mat2html on Tue Oct 12 12:05:14 2004
Cross-Directory links are: ON